Cargando…
Classification of crystallization outcomes using deep convolutional neural networks
The Machine Recognition of Crystallization Outcomes (MARCO) initiative has assembled roughly half a million annotated images of macromolecular crystallization experiments from various sources and setups. Here, state-of-the-art machine learning algorithms are trained and tested on different parts of...
Autores principales: | Bruno, Andrew E., Charbonneau, Patrick, Newman, Janet, Snell, Edward H., So, David R., Vanhoucke, Vincent, Watkins, Christopher J., Williams, Shawn, Wilson, Julie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6010233/ https://www.ncbi.nlm.nih.gov/pubmed/29924841 http://dx.doi.org/10.1371/journal.pone.0198883 |
Ejemplares similares
-
Classification of crystal structures using electron diffraction patterns with a deep convolutional neural network
por: Ra, Moonsoo, et al.
Publicado: (2021) -
Classification of crystal structure using a convolutional neural network
por: Park, Woon Bae, et al.
Publicado: (2017) -
Gas Classification Using Deep Convolutional Neural Networks
por: Peng, Pai, et al.
Publicado: (2018) -
Statistical Analysis of Crystallization Database Links Protein Physico-Chemical Features with Crystallization Mechanisms
por: Fusco, Diana, et al.
Publicado: (2014) -
Learning physical properties of liquid crystals with deep convolutional neural networks
por: Sigaki, Higor Y. D., et al.
Publicado: (2020)