Cargando…

miR-143/145 differentially regulate hematopoietic stem and progenitor activity through suppression of canonical TGFβ signaling

Expression of miR-143 and miR-145 is reduced in hematopoietic stem/progenitor cells (HSPCs) of myelodysplastic syndrome patients with a deletion in the long arm of chromosome 5. Here we show that mice lacking miR-143/145 have impaired HSPC activity with depletion of functional hematopoietic stem cel...

Descripción completa

Detalles Bibliográficos
Autores principales: Lam, Jeffrey, van den Bosch, Marion, Wegrzyn, Joanna, Parker, Jeremy, Ibrahim, Rawa, Slowski, Kate, Chang, Linda, Martinez-Høyer, Sergio, Condorelli, Gianluigi, Boldin, Mark, Deng, Yu, Umlandt, Patricia, Fuller, Megan, Karsan, Aly
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6010451/
https://www.ncbi.nlm.nih.gov/pubmed/29925839
http://dx.doi.org/10.1038/s41467-018-04831-3
Descripción
Sumario:Expression of miR-143 and miR-145 is reduced in hematopoietic stem/progenitor cells (HSPCs) of myelodysplastic syndrome patients with a deletion in the long arm of chromosome 5. Here we show that mice lacking miR-143/145 have impaired HSPC activity with depletion of functional hematopoietic stem cells (HSCs), but activation of progenitor cells (HPCs). We identify components of the transforming growth factor β (TGFβ) pathway as key targets of miR-143/145. Enforced expression of the TGFβ adaptor protein and miR-145 target, Disabled-2 (DAB2), recapitulates the HSC defect seen in miR-143/145(−/−) mice. Despite reduced HSC activity, older miR-143/145(−/−) and DAB2-expressing mice show elevated leukocyte counts associated with increased HPC activity. A subset of mice develop a serially transplantable myeloid malignancy, associated with expansion of HPC. Thus, miR-143/145 play a cell context-dependent role in HSPC function through regulation of TGFβ/DAB2 activation, and loss of these miRNAs creates a preleukemic state.