Cargando…
Deep Learning Renal Segmentation for Fully Automated Radiation Dose Estimation in Unsealed Source Therapy
BACKGROUND: Convolutional neural networks (CNNs) have been shown to be powerful tools to assist with object detection and—like a human observer—may be trained based on a relatively small cohort of reference subjects. Rapid, accurate organ recognition in medical imaging permits a variety of new quant...
Autores principales: | Jackson, Price, Hardcastle, Nicholas, Dawe, Noel, Kron, Tomas, Hofman, Michael S., Hicks, Rodney J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6010550/ https://www.ncbi.nlm.nih.gov/pubmed/29963496 http://dx.doi.org/10.3389/fonc.2018.00215 |
Ejemplares similares
-
Towards automated planning for unsealed source therapy
por: Schreibmann, Eduard, et al.
Publicado: (2012) -
A future of automated image contouring with machine learning in radiation therapy
por: Jackson, Price, et al.
Publicado: (2019) -
Unsealed Source: Scope of Practice for Radiopharmaceuticals Among United States Radiation Oncologists
por: Shukla, Utkarsh, et al.
Publicado: (2021) -
A benchmark dataset for binary segmentation and quantification of dust emissions from unsealed roads
por: De Silva, Asanka, et al.
Publicado: (2023) -
Release of patients after therapy with unsealed radionuclides
por: Commission Internationale de Protection contre les Radiations
Publicado: (2004)