Cargando…
Multi‐Omics Factor Analysis—a framework for unsupervised integration of multi‐omics data sets
Multi‐omics studies promise the improved characterization of biological processes across molecular layers. However, methods for the unsupervised integration of the resulting heterogeneous data sets are lacking. We present Multi‐Omics Factor Analysis (MOFA), a computational method for discovering the...
Autores principales: | Argelaguet, Ricard, Velten, Britta, Arnol, Damien, Dietrich, Sascha, Zenz, Thorsten, Marioni, John C, Buettner, Florian, Huber, Wolfgang, Stegle, Oliver |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6010767/ https://www.ncbi.nlm.nih.gov/pubmed/29925568 http://dx.doi.org/10.15252/msb.20178124 |
Ejemplares similares
-
MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data
por: Argelaguet, Ricard, et al.
Publicado: (2020) -
Multi-omics profiling of mouse gastrulation at single cell resolution
por: Argelaguet, Ricard, et al.
Publicado: (2019) -
Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO
por: Velten, Britta, et al.
Publicado: (2022) -
Single-cell multi-omics profiling links dynamic DNA methylation to cell fate decisions during mouse early organogenesis
por: Clark, Stephen J., et al.
Publicado: (2022) -
Tensorial blind source separation for improved analysis of multi-omic data
por: Teschendorff, Andrew E., et al.
Publicado: (2018)