Cargando…
Temperature and pH effect on glucose production from pretreated bagasse by a novel species of Citrobacter and other bacteria
Cellulolytic bacteria that produce cellulases, which are active over a range of pH and temperatures, can be used to catalyze hydrolysis of pretreated lignocellulosic material. This is important in the production of second generation biofuels among other biotechnological applications. In this investi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6010966/ https://www.ncbi.nlm.nih.gov/pubmed/29942873 http://dx.doi.org/10.1016/j.heliyon.2018.e00657 |
Sumario: | Cellulolytic bacteria that produce cellulases, which are active over a range of pH and temperatures, can be used to catalyze hydrolysis of pretreated lignocellulosic material. This is important in the production of second generation biofuels among other biotechnological applications. In this investigation, bacteria isolated from sugarcane bagasse were identified as strains of Enterobacter xiangfangensis, Serratia rubidaea, Klebsiella pneumoniae and a novel species of Citrobacter designated Citrobacter sp. UWIBGS10. The glucose production potential of these strains was studied on thermally and solvent pretreated sugarcane bagasse. This was performed at 24-hour intervals up to 168 hours in the range of pH 5–9 and temperature range 25–40 °C. Maximal concentrations of glucose for Citrobacter sp. UWIBGS10 occurred at pH 6 and 25 °C. For E. xiangfangensis, S. rubidaea, K. pneumoniae glucose concentrations were consistent across the pH and temperature ranges examined. From these results it could be concluded that the bacteria demonstrated ability for lignocellulolytic hydrolysis for the production of glucose and could be further explored for the characterization of commercial cellulolytic enzymes. |
---|