Cargando…
Identification and ultra‐high‐performance liquid chromatography coupled with high‐resolution mass spectrometry characterization of biosurfactants, including a new surfactin, isolated from oil‐contaminated environments
Biosurfactant‐producing bacteria were isolated from samples collected in areas contaminated with crude oil. The isolates were screened for biosurfactant production using qualitative drop‐collapse test, oil‐spreading and emulsification assays, and measurement of their tensoactive properties. Five iso...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6011949/ https://www.ncbi.nlm.nih.gov/pubmed/29761667 http://dx.doi.org/10.1111/1751-7915.13276 |
Sumario: | Biosurfactant‐producing bacteria were isolated from samples collected in areas contaminated with crude oil. The isolates were screened for biosurfactant production using qualitative drop‐collapse test, oil‐spreading and emulsification assays, and measurement of their tensoactive properties. Five isolates tested positive for in the screening experiments and displayed decrease in the surface tension below 30 mN m(−1). The biosurfactants produced by these isolates were further investigated and their molecular identification revealed that they are bacteria related to the Bacillus genus. Additionally, the biosurfactants produced were chemically characterized via UHPLC‐HRMS experiments, indicating the production of surfactin homologues, including a new class of these molecules. |
---|