Cargando…

Ring-opening copolymerization thermodynamics and kinetics of γ-valerolactone/ϵ-caprolactone

The general misconception that γ-lactones are not thermodynamically polymerizable has limited the development of all γ-lactone-based copolymers. A few studies have reported copolymerization of these five-membered cyclic esters with more reactive monomers, yet a systematic investigation of kinetics a...

Descripción completa

Detalles Bibliográficos
Autores principales: Gagliardi, Mariacristina, Bifone, Angelo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6013151/
https://www.ncbi.nlm.nih.gov/pubmed/29927986
http://dx.doi.org/10.1371/journal.pone.0199231
Descripción
Sumario:The general misconception that γ-lactones are not thermodynamically polymerizable has limited the development of all γ-lactone-based copolymers. A few studies have reported copolymerization of these five-membered cyclic esters with more reactive monomers, yet a systematic investigation of kinetics and thermodynamics is still lacking. To explore the feasibility of the reaction, we combined equilibrium and non-isothermal syntheses for the copolymerization of γ-valerolactone with ϵ-caprolactone, initiated with methoxy polyethyleneglycol and catalyzed by Tin(II) 2-ethylhexanoate. Here, we present the polymerization kinetic and thermodynamic parameters for different monomer ratios in the reaction feed. We observed the dependency of enthalpy and entropy of polymerization upon monomer ratio changes, and estimated a linear increase in the activation energy by increasing the γ-valerolactone fraction in the starting monomer mixture. Our data demonstrate that γ-valerolactone can copolymerize with ϵ-caprolactone, but only under specific conditions. The reaction parameters determined in this study will enable preparation of additional γ-valerolactone-based copolymers and development of a family of degradable materials with improved properties in respect to commonly used polyesters.