Cargando…
Suppressed topological phase transitions due to nonsymmorphism in SnTe stacking
We combine first principles calculations with a group theory analysis to investigate topological phase transitions in the stacking of SnTe monolayers. We show that distinct finite stacking yields different symmetry-imposed degeneracy, which dictates the hybridization properties of opposite surface s...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6013480/ https://www.ncbi.nlm.nih.gov/pubmed/29930356 http://dx.doi.org/10.1038/s41598-018-27827-x |
Sumario: | We combine first principles calculations with a group theory analysis to investigate topological phase transitions in the stacking of SnTe monolayers. We show that distinct finite stacking yields different symmetry-imposed degeneracy, which dictates the hybridization properties of opposite surface states. For SnTe aligned along the [001] direction, an (even) odd number of monolayers yields a (non)symmorphic space group. For the symmorphic case, the hybridization of surface states lead to band inversions and topological phase transitions as the sample height is reduced. In contrast, for a nonsymmorphic stacking, an extra degeneracy is guaranteed by symmetry, thus avoiding the hybridization and topological phase transitions, even in the limit of a few monolayers. Our group theory analysis provide a clear picture for this phenomenology and matches well the first principles calculations. |
---|