Cargando…

Functional Plasticity of Gamma Delta T Cells and Breast Tumor Targets in Hypoxia

Interactions between immune and tumor cells in the tumor microenvironment (TME) often impact patient outcome, yet remain poorly understood. In addition, the effects of biophysical features such as hypoxia [low oxygen (O(2))] on cells within the TME may lead to tumor evasion. Gamma delta T cells (γδT...

Descripción completa

Detalles Bibliográficos
Autores principales: Siegers, Gabrielle M., Dutta, Indrani, Lai, Raymond, Postovit, Lynne-Marie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6013583/
https://www.ncbi.nlm.nih.gov/pubmed/29963058
http://dx.doi.org/10.3389/fimmu.2018.01367
_version_ 1783334044828696576
author Siegers, Gabrielle M.
Dutta, Indrani
Lai, Raymond
Postovit, Lynne-Marie
author_facet Siegers, Gabrielle M.
Dutta, Indrani
Lai, Raymond
Postovit, Lynne-Marie
author_sort Siegers, Gabrielle M.
collection PubMed
description Interactions between immune and tumor cells in the tumor microenvironment (TME) often impact patient outcome, yet remain poorly understood. In addition, the effects of biophysical features such as hypoxia [low oxygen (O(2))] on cells within the TME may lead to tumor evasion. Gamma delta T cells (γδTcs) naturally kill transformed cells and are therefore under development as immunotherapy for various cancers. Clinical trials have proven the safety of γδTc immunotherapy and increased circulating γδTc levels correlate with improved patient outcome. Yet, the function of γδTc tumor infiltrating lymphocytes in human breast cancer remains controversial. Breast tumors can be highly hypoxic, thus therapy must be effective under low O(2) conditions. We have found increased infiltration of γδTc in areas of hypoxia in a small cohort of breast tumors; considering their inherent plasticity, it is important to understand how hypoxia influences γδTc function. In vitro, the cell density of expanded primary healthy donor blood-derived human γδTc decreased in response to hypoxia (2% O(2)) compared to normoxia (20% O(2)). However, the secretion of macrophage inflammatory protein 1α (MIP1α)/MIP1β, regulated on activation, normal T cell expressed and secreted (RANTES), and CD40L by γδTc were increased after 40 h in hypoxia compared to normoxia concomitant with the stabilization of hypoxia inducible factor 1-alpha protein. Mechanistically, we determined that natural killer group 2, member D (NKG2D) on γδTc and the NKG2D ligand MHC class I polypeptide-related sequence A (MICA)/B on MCF-7 and T47D breast cancer cell lines are important for γδTc cytotoxicity, but that MIP1α, RANTES, and CD40L do not play a direct role in cytotoxicity. Hypoxia appeared to enhance the cytotoxicity of γδTc such that exposure for 48 h increased cytotoxicity of γδTc against breast cancer cells that were maintained in normoxia; conversely, breast cancer lines incubated in hypoxia for 48 h prior to the assay were largely resistant to γδTc cytotoxicity. MICA/B surface expression on both MCF-7 and T47D remained unchanged upon exposure to hypoxia; however, ELISAs revealed increased MICA shedding by MCF-7 under hypoxia, potentially explaining resistance to γδTc cytotoxicity. Despite enhanced γδTc cytotoxicity upon pre-incubation in hypoxia, these cells were unable to overcome hypoxia-induced resistance of MCF-7. Thus, such resistance mechanisms employed by breast cancer targets must be overcome to develop more effective γδTc immunotherapies.
format Online
Article
Text
id pubmed-6013583
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-60135832018-06-29 Functional Plasticity of Gamma Delta T Cells and Breast Tumor Targets in Hypoxia Siegers, Gabrielle M. Dutta, Indrani Lai, Raymond Postovit, Lynne-Marie Front Immunol Immunology Interactions between immune and tumor cells in the tumor microenvironment (TME) often impact patient outcome, yet remain poorly understood. In addition, the effects of biophysical features such as hypoxia [low oxygen (O(2))] on cells within the TME may lead to tumor evasion. Gamma delta T cells (γδTcs) naturally kill transformed cells and are therefore under development as immunotherapy for various cancers. Clinical trials have proven the safety of γδTc immunotherapy and increased circulating γδTc levels correlate with improved patient outcome. Yet, the function of γδTc tumor infiltrating lymphocytes in human breast cancer remains controversial. Breast tumors can be highly hypoxic, thus therapy must be effective under low O(2) conditions. We have found increased infiltration of γδTc in areas of hypoxia in a small cohort of breast tumors; considering their inherent plasticity, it is important to understand how hypoxia influences γδTc function. In vitro, the cell density of expanded primary healthy donor blood-derived human γδTc decreased in response to hypoxia (2% O(2)) compared to normoxia (20% O(2)). However, the secretion of macrophage inflammatory protein 1α (MIP1α)/MIP1β, regulated on activation, normal T cell expressed and secreted (RANTES), and CD40L by γδTc were increased after 40 h in hypoxia compared to normoxia concomitant with the stabilization of hypoxia inducible factor 1-alpha protein. Mechanistically, we determined that natural killer group 2, member D (NKG2D) on γδTc and the NKG2D ligand MHC class I polypeptide-related sequence A (MICA)/B on MCF-7 and T47D breast cancer cell lines are important for γδTc cytotoxicity, but that MIP1α, RANTES, and CD40L do not play a direct role in cytotoxicity. Hypoxia appeared to enhance the cytotoxicity of γδTc such that exposure for 48 h increased cytotoxicity of γδTc against breast cancer cells that were maintained in normoxia; conversely, breast cancer lines incubated in hypoxia for 48 h prior to the assay were largely resistant to γδTc cytotoxicity. MICA/B surface expression on both MCF-7 and T47D remained unchanged upon exposure to hypoxia; however, ELISAs revealed increased MICA shedding by MCF-7 under hypoxia, potentially explaining resistance to γδTc cytotoxicity. Despite enhanced γδTc cytotoxicity upon pre-incubation in hypoxia, these cells were unable to overcome hypoxia-induced resistance of MCF-7. Thus, such resistance mechanisms employed by breast cancer targets must be overcome to develop more effective γδTc immunotherapies. Frontiers Media S.A. 2018-06-15 /pmc/articles/PMC6013583/ /pubmed/29963058 http://dx.doi.org/10.3389/fimmu.2018.01367 Text en Copyright © 2018 Siegers, Dutta, Lai and Postovit. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Immunology
Siegers, Gabrielle M.
Dutta, Indrani
Lai, Raymond
Postovit, Lynne-Marie
Functional Plasticity of Gamma Delta T Cells and Breast Tumor Targets in Hypoxia
title Functional Plasticity of Gamma Delta T Cells and Breast Tumor Targets in Hypoxia
title_full Functional Plasticity of Gamma Delta T Cells and Breast Tumor Targets in Hypoxia
title_fullStr Functional Plasticity of Gamma Delta T Cells and Breast Tumor Targets in Hypoxia
title_full_unstemmed Functional Plasticity of Gamma Delta T Cells and Breast Tumor Targets in Hypoxia
title_short Functional Plasticity of Gamma Delta T Cells and Breast Tumor Targets in Hypoxia
title_sort functional plasticity of gamma delta t cells and breast tumor targets in hypoxia
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6013583/
https://www.ncbi.nlm.nih.gov/pubmed/29963058
http://dx.doi.org/10.3389/fimmu.2018.01367
work_keys_str_mv AT siegersgabriellem functionalplasticityofgammadeltatcellsandbreasttumortargetsinhypoxia
AT duttaindrani functionalplasticityofgammadeltatcellsandbreasttumortargetsinhypoxia
AT lairaymond functionalplasticityofgammadeltatcellsandbreasttumortargetsinhypoxia
AT postovitlynnemarie functionalplasticityofgammadeltatcellsandbreasttumortargetsinhypoxia