Cargando…
ERCC1 rs11615 polymorphism increases susceptibility to breast cancer: a meta-analysis of 4547 individuals
Excision repair cross-complementation group 1 (ERCC1), a DNA repair protein, is vital for maintaining genomic fidelity and integrity. Despite the fact that a mounting body of case–control studies has concentrated on investigating the association of the ERCC1 rs11615 polymorphism and breast cancer ri...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6013698/ https://www.ncbi.nlm.nih.gov/pubmed/29752341 http://dx.doi.org/10.1042/BSR20180440 |
Sumario: | Excision repair cross-complementation group 1 (ERCC1), a DNA repair protein, is vital for maintaining genomic fidelity and integrity. Despite the fact that a mounting body of case–control studies has concentrated on investigating the association of the ERCC1 rs11615 polymorphism and breast cancer risk, there is still no consensus on it. We conducted the current meta-analysis of all eligible articles to reach a much more explicit conclusion on this ambiguous association. A total of seven studies involving 2354 breast cancer cases and 2193 controls were elaborately selected for this analysis from the Embase, EBSCO, PubMed, WanFang, and China National Knowledge Infrastructure (CNKI) databases. Pooled odds ratios (ORs) and their 95% confidence intervals (CIs) were estimated in our meta-analysis. We found that the ERCC1 rs11615 polymorphism was significantly associated with breast cancer risk under all genetic models. When excluded, the studies that deviated from Hardy–Weinberg equilibrium (HWE), the pooled results of what remained significantly increase the risk of breast cancer under the allele model (OR = 1.14, 95% CI = 1.02–1.27, P=0.02), heterozygote model (OR = 1.24, 95% CI = 1.06–1.44, P=0.007), and dominant model (OR = 1.21, 95% CI = 1.05–1.41, P=0.01). This increased breast cancer risk was found in Asian population as well as under the heterozygote model (OR = 1.24, 95% CI = 1.05–1.48, P=0.013) and dominant model (OR = 1.20, 95% CI = 1.02–1.42, P=0.03). Our results suggest that the ERCC1 rs11615 polymorphism is associated with breast cancer susceptibility, and in particular, this increased risk of breast cancer existence in Asian population. |
---|