Cargando…

A threshold model for receptor tyrosine kinase signaling specificity and cell fate determination

Upon ligand engagement, the single-pass transmembrane receptor tyrosine kinases (RTKs) dimerize to transmit qualitatively and quantitatively different intracellular signals that alter the transcriptional landscape and thereby determine the cellular response. The molecular mechanisms underlying these...

Descripción completa

Detalles Bibliográficos
Autores principales: Zinkle, Allen, Mohammadi, Moosa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000 Research Limited 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6013765/
https://www.ncbi.nlm.nih.gov/pubmed/29983915
http://dx.doi.org/10.12688/f1000research.14143.1
Descripción
Sumario:Upon ligand engagement, the single-pass transmembrane receptor tyrosine kinases (RTKs) dimerize to transmit qualitatively and quantitatively different intracellular signals that alter the transcriptional landscape and thereby determine the cellular response. The molecular mechanisms underlying these fundamental events are not well understood. Considering recent insights into the structural biology of fibroblast growth factor signaling, we propose a threshold model for RTK signaling specificity in which quantitative differences in the strength/longevity of ligand-induced receptor dimers on the cell surface lead to quantitative differences in the phosphorylation of activation loop (A-loop) tyrosines as well as qualitative differences in the phosphorylation of tyrosines mediating substrate recruitment. In this model, quantitative differences on A-loop tyrosine phosphorylation result in gradations in kinase activation, leading to the generation of intracellular signals of varying amplitude/duration. In contrast, qualitative differences in the pattern of tyrosine phosphorylation on the receptor result in the recruitment/activation of distinct substrates/intracellular pathways. Commensurate with both the dynamics of the intracellular signal and the types of intracellular pathways activated, unique transcriptional signatures are established. Our model provides a framework for engineering clinically useful ligands that can tune receptor dimerization stability so as to bias the cellular transcriptome to achieve a desired cellular output.