Cargando…

Multi-objective active machine learning rapidly improves structure–activity models and reveals new protein–protein interaction inhibitors

Active machine learning puts artificial intelligence in charge of a sequential, feedback-driven discovery process. We present the application of a multi-objective active learning scheme for identifying small molecules that inhibit the protein–protein interaction between the anti-cancer target CXC ch...

Descripción completa

Detalles Bibliográficos
Autores principales: Reker, D., Schneider, P., Schneider, G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6013791/
https://www.ncbi.nlm.nih.gov/pubmed/30155037
http://dx.doi.org/10.1039/c5sc04272k
Descripción
Sumario:Active machine learning puts artificial intelligence in charge of a sequential, feedback-driven discovery process. We present the application of a multi-objective active learning scheme for identifying small molecules that inhibit the protein–protein interaction between the anti-cancer target CXC chemokine receptor 4 (CXCR4) and its endogenous ligand CXCL-12 (SDF-1). Experimental design by active learning was used to retrieve informative active compounds that continuously improved the adaptive structure–activity model. The balanced character of the compound selection function rapidly delivered new molecular structures with the desired inhibitory activity and at the same time allowed us to focus on informative compounds for model adjustment. The results of our study validate active learning for prospective ligand finding by adaptive, focused screening of large compound repositories and virtual compound libraries.