Cargando…
Multi-objective active machine learning rapidly improves structure–activity models and reveals new protein–protein interaction inhibitors
Active machine learning puts artificial intelligence in charge of a sequential, feedback-driven discovery process. We present the application of a multi-objective active learning scheme for identifying small molecules that inhibit the protein–protein interaction between the anti-cancer target CXC ch...
Autores principales: | Reker, D., Schneider, P., Schneider, G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6013791/ https://www.ncbi.nlm.nih.gov/pubmed/30155037 http://dx.doi.org/10.1039/c5sc04272k |
Ejemplares similares
-
Continuous flow synthesis of pyridinium salts accelerated by multi-objective Bayesian optimization with active learning
por: Dunlap, John H., et al.
Publicado: (2023) -
Machine Learning Models to Predict Protein–Protein Interaction Inhibitors
por: Díaz-Eufracio, Bárbara I., et al.
Publicado: (2022) -
Query-guided protein–protein interaction inhibitor discovery
por: Celis, Sergio, et al.
Publicado: (2021) -
Theoretical models of inhibitory activity for inhibitors of protein–protein interactions: targeting menin–mixed lineage leukemia with small molecules
por: Jedwabny, Wiktoria, et al.
Publicado: (2017) -
Multi-level machine learning prediction of protein–protein interactions in Saccharomyces cerevisiae
por: Zubek, Julian, et al.
Publicado: (2015)