Cargando…
Gene length corrected trimmed mean of M-values (GeTMM) processing of RNA-seq data performs similarly in intersample analyses while improving intrasample comparisons
BACKGROUND: Current normalization methods for RNA-sequencing data allow either for intersample comparison to identify differentially expressed (DE) genes or for intrasample comparison for the discovery and validation of gene signatures. Most studies on optimization of normalization methods typically...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6013957/ https://www.ncbi.nlm.nih.gov/pubmed/29929481 http://dx.doi.org/10.1186/s12859-018-2246-7 |
_version_ | 1783334130323292160 |
---|---|
author | Smid, Marcel Coebergh van den Braak, Robert R. J. van de Werken, Harmen J. G. van Riet, Job van Galen, Anne de Weerd, Vanja van der Vlugt-Daane, Michelle Bril, Sandra I. Lalmahomed, Zarina S. Kloosterman, Wigard P. Wilting, Saskia M. Foekens, John A. IJzermans, Jan N. M. Martens, John W. M. Sieuwerts, Anieta M. |
author_facet | Smid, Marcel Coebergh van den Braak, Robert R. J. van de Werken, Harmen J. G. van Riet, Job van Galen, Anne de Weerd, Vanja van der Vlugt-Daane, Michelle Bril, Sandra I. Lalmahomed, Zarina S. Kloosterman, Wigard P. Wilting, Saskia M. Foekens, John A. IJzermans, Jan N. M. Martens, John W. M. Sieuwerts, Anieta M. |
author_sort | Smid, Marcel |
collection | PubMed |
description | BACKGROUND: Current normalization methods for RNA-sequencing data allow either for intersample comparison to identify differentially expressed (DE) genes or for intrasample comparison for the discovery and validation of gene signatures. Most studies on optimization of normalization methods typically use simulated data to validate methodologies. We describe a new method, GeTMM, which allows for both inter- and intrasample analyses with the same normalized data set. We used actual (i.e. not simulated) RNA-seq data from 263 colon cancers (no biological replicates) and used the same read count data to compare GeTMM with the most commonly used normalization methods (i.e. TMM (used by edgeR), RLE (used by DESeq2) and TPM) with respect to distributions, effect of RNA quality, subtype-classification, recurrence score, recall of DE genes and correlation to RT-qPCR data. RESULTS: We observed a clear benefit for GeTMM and TPM with regard to intrasample comparison while GeTMM performed similar to TMM and RLE normalized data in intersample comparisons. Regarding DE genes, recall was found comparable among the normalization methods, while GeTMM showed the lowest number of false-positive DE genes. Remarkably, we observed limited detrimental effects in samples with low RNA quality. CONCLUSIONS: We show that GeTMM outperforms established methods with regard to intrasample comparison while performing equivalent with regard to intersample normalization using the same normalized data. These combined properties enhance the general usefulness of RNA-seq but also the comparability to the many array-based gene expression data in the public domain. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-018-2246-7) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6013957 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-60139572018-07-05 Gene length corrected trimmed mean of M-values (GeTMM) processing of RNA-seq data performs similarly in intersample analyses while improving intrasample comparisons Smid, Marcel Coebergh van den Braak, Robert R. J. van de Werken, Harmen J. G. van Riet, Job van Galen, Anne de Weerd, Vanja van der Vlugt-Daane, Michelle Bril, Sandra I. Lalmahomed, Zarina S. Kloosterman, Wigard P. Wilting, Saskia M. Foekens, John A. IJzermans, Jan N. M. Martens, John W. M. Sieuwerts, Anieta M. BMC Bioinformatics Methodology Article BACKGROUND: Current normalization methods for RNA-sequencing data allow either for intersample comparison to identify differentially expressed (DE) genes or for intrasample comparison for the discovery and validation of gene signatures. Most studies on optimization of normalization methods typically use simulated data to validate methodologies. We describe a new method, GeTMM, which allows for both inter- and intrasample analyses with the same normalized data set. We used actual (i.e. not simulated) RNA-seq data from 263 colon cancers (no biological replicates) and used the same read count data to compare GeTMM with the most commonly used normalization methods (i.e. TMM (used by edgeR), RLE (used by DESeq2) and TPM) with respect to distributions, effect of RNA quality, subtype-classification, recurrence score, recall of DE genes and correlation to RT-qPCR data. RESULTS: We observed a clear benefit for GeTMM and TPM with regard to intrasample comparison while GeTMM performed similar to TMM and RLE normalized data in intersample comparisons. Regarding DE genes, recall was found comparable among the normalization methods, while GeTMM showed the lowest number of false-positive DE genes. Remarkably, we observed limited detrimental effects in samples with low RNA quality. CONCLUSIONS: We show that GeTMM outperforms established methods with regard to intrasample comparison while performing equivalent with regard to intersample normalization using the same normalized data. These combined properties enhance the general usefulness of RNA-seq but also the comparability to the many array-based gene expression data in the public domain. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-018-2246-7) contains supplementary material, which is available to authorized users. BioMed Central 2018-06-22 /pmc/articles/PMC6013957/ /pubmed/29929481 http://dx.doi.org/10.1186/s12859-018-2246-7 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Methodology Article Smid, Marcel Coebergh van den Braak, Robert R. J. van de Werken, Harmen J. G. van Riet, Job van Galen, Anne de Weerd, Vanja van der Vlugt-Daane, Michelle Bril, Sandra I. Lalmahomed, Zarina S. Kloosterman, Wigard P. Wilting, Saskia M. Foekens, John A. IJzermans, Jan N. M. Martens, John W. M. Sieuwerts, Anieta M. Gene length corrected trimmed mean of M-values (GeTMM) processing of RNA-seq data performs similarly in intersample analyses while improving intrasample comparisons |
title | Gene length corrected trimmed mean of M-values (GeTMM) processing of RNA-seq data performs similarly in intersample analyses while improving intrasample comparisons |
title_full | Gene length corrected trimmed mean of M-values (GeTMM) processing of RNA-seq data performs similarly in intersample analyses while improving intrasample comparisons |
title_fullStr | Gene length corrected trimmed mean of M-values (GeTMM) processing of RNA-seq data performs similarly in intersample analyses while improving intrasample comparisons |
title_full_unstemmed | Gene length corrected trimmed mean of M-values (GeTMM) processing of RNA-seq data performs similarly in intersample analyses while improving intrasample comparisons |
title_short | Gene length corrected trimmed mean of M-values (GeTMM) processing of RNA-seq data performs similarly in intersample analyses while improving intrasample comparisons |
title_sort | gene length corrected trimmed mean of m-values (getmm) processing of rna-seq data performs similarly in intersample analyses while improving intrasample comparisons |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6013957/ https://www.ncbi.nlm.nih.gov/pubmed/29929481 http://dx.doi.org/10.1186/s12859-018-2246-7 |
work_keys_str_mv | AT smidmarcel genelengthcorrectedtrimmedmeanofmvaluesgetmmprocessingofrnaseqdataperformssimilarlyinintersampleanalyseswhileimprovingintrasamplecomparisons AT coeberghvandenbraakrobertrj genelengthcorrectedtrimmedmeanofmvaluesgetmmprocessingofrnaseqdataperformssimilarlyinintersampleanalyseswhileimprovingintrasamplecomparisons AT vandewerkenharmenjg genelengthcorrectedtrimmedmeanofmvaluesgetmmprocessingofrnaseqdataperformssimilarlyinintersampleanalyseswhileimprovingintrasamplecomparisons AT vanrietjob genelengthcorrectedtrimmedmeanofmvaluesgetmmprocessingofrnaseqdataperformssimilarlyinintersampleanalyseswhileimprovingintrasamplecomparisons AT vangalenanne genelengthcorrectedtrimmedmeanofmvaluesgetmmprocessingofrnaseqdataperformssimilarlyinintersampleanalyseswhileimprovingintrasamplecomparisons AT deweerdvanja genelengthcorrectedtrimmedmeanofmvaluesgetmmprocessingofrnaseqdataperformssimilarlyinintersampleanalyseswhileimprovingintrasamplecomparisons AT vandervlugtdaanemichelle genelengthcorrectedtrimmedmeanofmvaluesgetmmprocessingofrnaseqdataperformssimilarlyinintersampleanalyseswhileimprovingintrasamplecomparisons AT brilsandrai genelengthcorrectedtrimmedmeanofmvaluesgetmmprocessingofrnaseqdataperformssimilarlyinintersampleanalyseswhileimprovingintrasamplecomparisons AT lalmahomedzarinas genelengthcorrectedtrimmedmeanofmvaluesgetmmprocessingofrnaseqdataperformssimilarlyinintersampleanalyseswhileimprovingintrasamplecomparisons AT kloostermanwigardp genelengthcorrectedtrimmedmeanofmvaluesgetmmprocessingofrnaseqdataperformssimilarlyinintersampleanalyseswhileimprovingintrasamplecomparisons AT wiltingsaskiam genelengthcorrectedtrimmedmeanofmvaluesgetmmprocessingofrnaseqdataperformssimilarlyinintersampleanalyseswhileimprovingintrasamplecomparisons AT foekensjohna genelengthcorrectedtrimmedmeanofmvaluesgetmmprocessingofrnaseqdataperformssimilarlyinintersampleanalyseswhileimprovingintrasamplecomparisons AT ijzermansjannm genelengthcorrectedtrimmedmeanofmvaluesgetmmprocessingofrnaseqdataperformssimilarlyinintersampleanalyseswhileimprovingintrasamplecomparisons AT genelengthcorrectedtrimmedmeanofmvaluesgetmmprocessingofrnaseqdataperformssimilarlyinintersampleanalyseswhileimprovingintrasamplecomparisons AT martensjohnwm genelengthcorrectedtrimmedmeanofmvaluesgetmmprocessingofrnaseqdataperformssimilarlyinintersampleanalyseswhileimprovingintrasamplecomparisons AT sieuwertsanietam genelengthcorrectedtrimmedmeanofmvaluesgetmmprocessingofrnaseqdataperformssimilarlyinintersampleanalyseswhileimprovingintrasamplecomparisons |