Cargando…

Cardiomyopathy-associated mutation in the ADP/ATP carrier reveals translation-dependent regulation of cytochrome c oxidase activity

How the absence of the major mitochondrial ADP/ATP carrier in yeast, Aac2p, results in a specific defect in cytochrome c oxidase (COX; complex IV) activity is a long-standing mystery. Aac2p physically associates with respiratory supercomplexes, which include complex IV, raising the possibility that...

Descripción completa

Detalles Bibliográficos
Autores principales: Ogunbona, Oluwaseun B., Baile, Matthew G., Claypool, Steven M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6014099/
https://www.ncbi.nlm.nih.gov/pubmed/29688796
http://dx.doi.org/10.1091/mbc.E17-12-0700
_version_ 1783334162450612224
author Ogunbona, Oluwaseun B.
Baile, Matthew G.
Claypool, Steven M.
author_facet Ogunbona, Oluwaseun B.
Baile, Matthew G.
Claypool, Steven M.
author_sort Ogunbona, Oluwaseun B.
collection PubMed
description How the absence of the major mitochondrial ADP/ATP carrier in yeast, Aac2p, results in a specific defect in cytochrome c oxidase (COX; complex IV) activity is a long-standing mystery. Aac2p physically associates with respiratory supercomplexes, which include complex IV, raising the possibility that its activity is dependent on its association with Aac2p. Here, we have leveraged a transport-dead pathogenic AAC2 point mutant to determine the basis for the reduced COX activity in the absence of Aac2p. The steady-state levels of complex IV subunits encoded by the mitochondrial genome are significantly reduced in the absence of Aac2p function, whether its association with respiratory supercomplexes is preserved or not. This diminution in COX amounts is not caused by a reduction in the mitochondrial genome copy number or the steady-state level of its transcripts, and does not reflect a defect in complex IV assembly. Instead, the absence of Aac2p activity, genetically or pharmacologically, results in an aberrant pattern of mitochondrial translation. Interestingly, compared with the complete absence of Aac2p, the complex IV–related defects are greater in mitochondria expressing the transport-inactive Aac2p mutant. Our results highlight a critical role for Aac2p transport in mitochondrial translation whose disturbance uniquely impacts cytochrome c oxidase.
format Online
Article
Text
id pubmed-6014099
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher The American Society for Cell Biology
record_format MEDLINE/PubMed
spelling pubmed-60140992018-08-30 Cardiomyopathy-associated mutation in the ADP/ATP carrier reveals translation-dependent regulation of cytochrome c oxidase activity Ogunbona, Oluwaseun B. Baile, Matthew G. Claypool, Steven M. Mol Biol Cell Articles How the absence of the major mitochondrial ADP/ATP carrier in yeast, Aac2p, results in a specific defect in cytochrome c oxidase (COX; complex IV) activity is a long-standing mystery. Aac2p physically associates with respiratory supercomplexes, which include complex IV, raising the possibility that its activity is dependent on its association with Aac2p. Here, we have leveraged a transport-dead pathogenic AAC2 point mutant to determine the basis for the reduced COX activity in the absence of Aac2p. The steady-state levels of complex IV subunits encoded by the mitochondrial genome are significantly reduced in the absence of Aac2p function, whether its association with respiratory supercomplexes is preserved or not. This diminution in COX amounts is not caused by a reduction in the mitochondrial genome copy number or the steady-state level of its transcripts, and does not reflect a defect in complex IV assembly. Instead, the absence of Aac2p activity, genetically or pharmacologically, results in an aberrant pattern of mitochondrial translation. Interestingly, compared with the complete absence of Aac2p, the complex IV–related defects are greater in mitochondria expressing the transport-inactive Aac2p mutant. Our results highlight a critical role for Aac2p transport in mitochondrial translation whose disturbance uniquely impacts cytochrome c oxidase. The American Society for Cell Biology 2018-06-15 /pmc/articles/PMC6014099/ /pubmed/29688796 http://dx.doi.org/10.1091/mbc.E17-12-0700 Text en © 2018 Ogunbona et al. “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology. http://creativecommons.org/licenses/by-nc-sa/3.0/ This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License.
spellingShingle Articles
Ogunbona, Oluwaseun B.
Baile, Matthew G.
Claypool, Steven M.
Cardiomyopathy-associated mutation in the ADP/ATP carrier reveals translation-dependent regulation of cytochrome c oxidase activity
title Cardiomyopathy-associated mutation in the ADP/ATP carrier reveals translation-dependent regulation of cytochrome c oxidase activity
title_full Cardiomyopathy-associated mutation in the ADP/ATP carrier reveals translation-dependent regulation of cytochrome c oxidase activity
title_fullStr Cardiomyopathy-associated mutation in the ADP/ATP carrier reveals translation-dependent regulation of cytochrome c oxidase activity
title_full_unstemmed Cardiomyopathy-associated mutation in the ADP/ATP carrier reveals translation-dependent regulation of cytochrome c oxidase activity
title_short Cardiomyopathy-associated mutation in the ADP/ATP carrier reveals translation-dependent regulation of cytochrome c oxidase activity
title_sort cardiomyopathy-associated mutation in the adp/atp carrier reveals translation-dependent regulation of cytochrome c oxidase activity
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6014099/
https://www.ncbi.nlm.nih.gov/pubmed/29688796
http://dx.doi.org/10.1091/mbc.E17-12-0700
work_keys_str_mv AT ogunbonaoluwaseunb cardiomyopathyassociatedmutationintheadpatpcarrierrevealstranslationdependentregulationofcytochromecoxidaseactivity
AT bailematthewg cardiomyopathyassociatedmutationintheadpatpcarrierrevealstranslationdependentregulationofcytochromecoxidaseactivity
AT claypoolstevenm cardiomyopathyassociatedmutationintheadpatpcarrierrevealstranslationdependentregulationofcytochromecoxidaseactivity