Cargando…
Relief from nitrogen starvation triggers transient destabilization of glycolytic mRNAs in Saccharomyces cerevisiae cells
Nitrogen replenishment of nitrogen-starved yeast cells resulted in substantial transcriptome changes. There was an unexplained rapid, transient down-regulation of glycolytic genes. This unexpected result prompted us to search for the factors controlling these changes, among which is the possible inv...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6014168/ https://www.ncbi.nlm.nih.gov/pubmed/29282283 http://dx.doi.org/10.1091/mbc.E17-01-0061 |
_version_ | 1783334178271526912 |
---|---|
author | Tesnière, Catherine Pradal, Martine Bessière, Chloé Sanchez, Isabelle Blondin, Bruno Bigey, Frédéric |
author_facet | Tesnière, Catherine Pradal, Martine Bessière, Chloé Sanchez, Isabelle Blondin, Bruno Bigey, Frédéric |
author_sort | Tesnière, Catherine |
collection | PubMed |
description | Nitrogen replenishment of nitrogen-starved yeast cells resulted in substantial transcriptome changes. There was an unexplained rapid, transient down-regulation of glycolytic genes. This unexpected result prompted us to search for the factors controlling these changes, among which is the possible involvement of different nutrient-sensing pathways such as the TORC1 and cAMP/PKA pathways. To that end, the effects of various gene deletions or chemical blocking agents were tested by investigating the expression of PGK1, one of the glycolytic genes most affected after nitrogen replenishment. We report here that several factors affected glycolytic mRNA stability, among which were glucose sensing, protein elongation, nitrogen metabolism, and TOR signaling. Ammonium sensing was not involved in the response, but ammonium metabolism was required. Thus, our results suggest that, in the presence of glucose, carbon/nitrogen cross-talk is likely involved in the response to nitrogen upshift. Our data suggest that posttranscriptional control of glycolytic gene expression may be an important response to nitrogen replenishment. |
format | Online Article Text |
id | pubmed-6014168 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The American Society for Cell Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-60141682018-06-22 Relief from nitrogen starvation triggers transient destabilization of glycolytic mRNAs in Saccharomyces cerevisiae cells Tesnière, Catherine Pradal, Martine Bessière, Chloé Sanchez, Isabelle Blondin, Bruno Bigey, Frédéric Mol Biol Cell Articles Nitrogen replenishment of nitrogen-starved yeast cells resulted in substantial transcriptome changes. There was an unexplained rapid, transient down-regulation of glycolytic genes. This unexpected result prompted us to search for the factors controlling these changes, among which is the possible involvement of different nutrient-sensing pathways such as the TORC1 and cAMP/PKA pathways. To that end, the effects of various gene deletions or chemical blocking agents were tested by investigating the expression of PGK1, one of the glycolytic genes most affected after nitrogen replenishment. We report here that several factors affected glycolytic mRNA stability, among which were glucose sensing, protein elongation, nitrogen metabolism, and TOR signaling. Ammonium sensing was not involved in the response, but ammonium metabolism was required. Thus, our results suggest that, in the presence of glucose, carbon/nitrogen cross-talk is likely involved in the response to nitrogen upshift. Our data suggest that posttranscriptional control of glycolytic gene expression may be an important response to nitrogen replenishment. The American Society for Cell Biology 2018-02-15 /pmc/articles/PMC6014168/ /pubmed/29282283 http://dx.doi.org/10.1091/mbc.E17-01-0061 Text en © 2018 Tesnière et al. “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology. http://creativecommons.org/licenses/by-nc-sa/3.0/ This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License. |
spellingShingle | Articles Tesnière, Catherine Pradal, Martine Bessière, Chloé Sanchez, Isabelle Blondin, Bruno Bigey, Frédéric Relief from nitrogen starvation triggers transient destabilization of glycolytic mRNAs in Saccharomyces cerevisiae cells |
title | Relief from nitrogen starvation triggers transient destabilization of glycolytic mRNAs in Saccharomyces cerevisiae cells |
title_full | Relief from nitrogen starvation triggers transient destabilization of glycolytic mRNAs in Saccharomyces cerevisiae cells |
title_fullStr | Relief from nitrogen starvation triggers transient destabilization of glycolytic mRNAs in Saccharomyces cerevisiae cells |
title_full_unstemmed | Relief from nitrogen starvation triggers transient destabilization of glycolytic mRNAs in Saccharomyces cerevisiae cells |
title_short | Relief from nitrogen starvation triggers transient destabilization of glycolytic mRNAs in Saccharomyces cerevisiae cells |
title_sort | relief from nitrogen starvation triggers transient destabilization of glycolytic mrnas in saccharomyces cerevisiae cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6014168/ https://www.ncbi.nlm.nih.gov/pubmed/29282283 http://dx.doi.org/10.1091/mbc.E17-01-0061 |
work_keys_str_mv | AT tesnierecatherine relieffromnitrogenstarvationtriggerstransientdestabilizationofglycolyticmrnasinsaccharomycescerevisiaecells AT pradalmartine relieffromnitrogenstarvationtriggerstransientdestabilizationofglycolyticmrnasinsaccharomycescerevisiaecells AT bessierechloe relieffromnitrogenstarvationtriggerstransientdestabilizationofglycolyticmrnasinsaccharomycescerevisiaecells AT sanchezisabelle relieffromnitrogenstarvationtriggerstransientdestabilizationofglycolyticmrnasinsaccharomycescerevisiaecells AT blondinbruno relieffromnitrogenstarvationtriggerstransientdestabilizationofglycolyticmrnasinsaccharomycescerevisiaecells AT bigeyfrederic relieffromnitrogenstarvationtriggerstransientdestabilizationofglycolyticmrnasinsaccharomycescerevisiaecells |