Cargando…

Salvia przewalskii extract of total phenolic acids inhibit TLR4 signaling activation in podocyte injury induced by puromycin aminonucleoside in vitro

Background: TLR4 signaling is known to be involved in podocyte injury. We have previously shown that Salvia przewalskii extract of total phenolic acids (SPE) and its active monomer salvianolic acid B (SalB) and rosmarinic acid (RA) protect podocytes from injury induced by PAN. In the present study,...

Descripción completa

Detalles Bibliográficos
Autores principales: Ren, Hongqi, Hu, Xueqing, Liu, Yun, Dai, Deshu, Liu, Xiang, Wang, Zenghui, Yang, Yang, Li, Xiangyang, Liu, Ying, Tang, Renxian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6014368/
https://www.ncbi.nlm.nih.gov/pubmed/29619899
http://dx.doi.org/10.1080/0886022X.2018.1456460
Descripción
Sumario:Background: TLR4 signaling is known to be involved in podocyte injury. We have previously shown that Salvia przewalskii extract of total phenolic acids (SPE) and its active monomer salvianolic acid B (SalB) and rosmarinic acid (RA) protect podocytes from injury induced by PAN. In the present study, we test whether SPE inhibits TLR4 signaling. Methods: The conditionally immortalized mouse podocytes were treated with SPE, SalB, RA, SalB + RA or tacrolimus for 30 min, followed by PAN (100 μg/mL) for 24 h. The F-actin staining with phalloidin was used to assess cytoskeletal injury in the podocytes. Western blotting and semi-quantitatives RT-PCR were used to assess the changes of the components in the TLR4 signaling pathway. Results: (1) The F-actin stress fibers of podocytes were almost completely disrupted after PAN treatment for 24 h, and the disruption was significantly alleviated by SPE; (2) the PAN-induced elevation of mRNA levels of TLR4, MyD88 and p65 were inhibited except p65 with high-dose SalB; (3) consistently, the protein levels of TLR4, MyD88 and pp65 were significantly elevated by PAN, and SPE, SalB, RA and admixture, respectively, attenuated the elevations of TLR4 and pp65 proteins; (4) SPE and tacrolimus have a similarly strong effect on inhibition of the expression of TLR4 signaling components. Conclusions: SPE protects podocytes from PAN-induced injury at least partly through inhibiting TLR4 signaling. SPE is as strong as tacrolimus in inhibiting TLR4 signaling in podocytes.