Cargando…

Multivalence cooperativity leading to “all-or-nothing” assembly: the case of nucleation-growth in supramolecular polymers

All-or-nothing molecular assembly events, essential for the efficient regulation of living systems at the molecular level, are emerging properties of complex chemical systems that are largely attributed to the cooperativity of weak interactions. The link between the self-assembly and the interaction...

Descripción completa

Detalles Bibliográficos
Autores principales: Lopez-Fontal, Elkin, Milanesi, Lilia, Tomas, Salvador
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6014373/
https://www.ncbi.nlm.nih.gov/pubmed/30009001
http://dx.doi.org/10.1039/c6sc00520a
_version_ 1783334223953788928
author Lopez-Fontal, Elkin
Milanesi, Lilia
Tomas, Salvador
author_facet Lopez-Fontal, Elkin
Milanesi, Lilia
Tomas, Salvador
author_sort Lopez-Fontal, Elkin
collection PubMed
description All-or-nothing molecular assembly events, essential for the efficient regulation of living systems at the molecular level, are emerging properties of complex chemical systems that are largely attributed to the cooperativity of weak interactions. The link between the self-assembly and the interactions responsible for the assembly is however often poorly defined. In this work we demonstrate how the chelate effect (multivalence cooperativity) can play a central role in the regulation of the all-or-nothing assembly of structures (supramolecular polymers here), even if the building blocks are not multivalent. We have studied the formation of double-stranded supramolecular polymers formed from Co-metalloporphyrin and bi-pyridine building blocks. Their cooperative nucleation–elongation assembly can be summarized as a thermodynamic cycle, where the monomer weakly oligomerizes linearly or weakly dimerizes laterally. But thanks to the chelate effect, the lateral dimer readily oligomerizes linearly and the oligomer readily dimerizes laterally, leading to long double stranded polymers. A model based on this simple thermodynamic cycle can be applied to the assembly of polymers with any number of strands, and allows for the determination of the length of the polymer and the all-or-nothing switching concentration from the pairwise binding constants. The model, which is consistent with the behaviour of supramolecular polymers such as microtubules and gelators, clearly shows that all-or-nothing assembly is triggered by a change in the mode of assembly, from non-multivalent to multivalent, when a critical concentration is reached. We believe this model is applicable to many molecular assembly processes, ranging from the formation of cell–cell focal adhesion points to crystallization.
format Online
Article
Text
id pubmed-6014373
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-60143732018-07-13 Multivalence cooperativity leading to “all-or-nothing” assembly: the case of nucleation-growth in supramolecular polymers Lopez-Fontal, Elkin Milanesi, Lilia Tomas, Salvador Chem Sci Chemistry All-or-nothing molecular assembly events, essential for the efficient regulation of living systems at the molecular level, are emerging properties of complex chemical systems that are largely attributed to the cooperativity of weak interactions. The link between the self-assembly and the interactions responsible for the assembly is however often poorly defined. In this work we demonstrate how the chelate effect (multivalence cooperativity) can play a central role in the regulation of the all-or-nothing assembly of structures (supramolecular polymers here), even if the building blocks are not multivalent. We have studied the formation of double-stranded supramolecular polymers formed from Co-metalloporphyrin and bi-pyridine building blocks. Their cooperative nucleation–elongation assembly can be summarized as a thermodynamic cycle, where the monomer weakly oligomerizes linearly or weakly dimerizes laterally. But thanks to the chelate effect, the lateral dimer readily oligomerizes linearly and the oligomer readily dimerizes laterally, leading to long double stranded polymers. A model based on this simple thermodynamic cycle can be applied to the assembly of polymers with any number of strands, and allows for the determination of the length of the polymer and the all-or-nothing switching concentration from the pairwise binding constants. The model, which is consistent with the behaviour of supramolecular polymers such as microtubules and gelators, clearly shows that all-or-nothing assembly is triggered by a change in the mode of assembly, from non-multivalent to multivalent, when a critical concentration is reached. We believe this model is applicable to many molecular assembly processes, ranging from the formation of cell–cell focal adhesion points to crystallization. Royal Society of Chemistry 2016-07-01 2016-03-21 /pmc/articles/PMC6014373/ /pubmed/30009001 http://dx.doi.org/10.1039/c6sc00520a Text en This journal is © The Royal Society of Chemistry 2016 http://creativecommons.org/licenses/by-nc/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0)
spellingShingle Chemistry
Lopez-Fontal, Elkin
Milanesi, Lilia
Tomas, Salvador
Multivalence cooperativity leading to “all-or-nothing” assembly: the case of nucleation-growth in supramolecular polymers
title Multivalence cooperativity leading to “all-or-nothing” assembly: the case of nucleation-growth in supramolecular polymers
title_full Multivalence cooperativity leading to “all-or-nothing” assembly: the case of nucleation-growth in supramolecular polymers
title_fullStr Multivalence cooperativity leading to “all-or-nothing” assembly: the case of nucleation-growth in supramolecular polymers
title_full_unstemmed Multivalence cooperativity leading to “all-or-nothing” assembly: the case of nucleation-growth in supramolecular polymers
title_short Multivalence cooperativity leading to “all-or-nothing” assembly: the case of nucleation-growth in supramolecular polymers
title_sort multivalence cooperativity leading to “all-or-nothing” assembly: the case of nucleation-growth in supramolecular polymers
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6014373/
https://www.ncbi.nlm.nih.gov/pubmed/30009001
http://dx.doi.org/10.1039/c6sc00520a
work_keys_str_mv AT lopezfontalelkin multivalencecooperativityleadingtoallornothingassemblythecaseofnucleationgrowthinsupramolecularpolymers
AT milanesililia multivalencecooperativityleadingtoallornothingassemblythecaseofnucleationgrowthinsupramolecularpolymers
AT tomassalvador multivalencecooperativityleadingtoallornothingassemblythecaseofnucleationgrowthinsupramolecularpolymers