Cargando…
Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model
In this paper, we propose a model for forecasting Value-at-Risk (VaR) using a Bayesian Markov-switching GJR-GARCH(1,1) model with skewed Student’s-t innovation, copula functions and extreme value theory. A Bayesian Markov-switching GJR-GARCH(1,1) model that identifies non-constant volatility over ti...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6014648/ https://www.ncbi.nlm.nih.gov/pubmed/29933383 http://dx.doi.org/10.1371/journal.pone.0198753 |
_version_ | 1783334265438601216 |
---|---|
author | Sampid, Marius Galabe Hasim, Haslifah M. Dai, Hongsheng |
author_facet | Sampid, Marius Galabe Hasim, Haslifah M. Dai, Hongsheng |
author_sort | Sampid, Marius Galabe |
collection | PubMed |
description | In this paper, we propose a model for forecasting Value-at-Risk (VaR) using a Bayesian Markov-switching GJR-GARCH(1,1) model with skewed Student’s-t innovation, copula functions and extreme value theory. A Bayesian Markov-switching GJR-GARCH(1,1) model that identifies non-constant volatility over time and allows the GARCH parameters to vary over time following a Markov process, is combined with copula functions and EVT to formulate the Bayesian Markov-switching GJR-GARCH(1,1) copula-EVT VaR model, which is then used to forecast the level of risk on financial asset returns. We further propose a new method for threshold selection in EVT analysis, which we term the hybrid method. Empirical and back-testing results show that the proposed VaR models capture VaR reasonably well in periods of calm and in periods of crisis. |
format | Online Article Text |
id | pubmed-6014648 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-60146482018-07-06 Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model Sampid, Marius Galabe Hasim, Haslifah M. Dai, Hongsheng PLoS One Research Article In this paper, we propose a model for forecasting Value-at-Risk (VaR) using a Bayesian Markov-switching GJR-GARCH(1,1) model with skewed Student’s-t innovation, copula functions and extreme value theory. A Bayesian Markov-switching GJR-GARCH(1,1) model that identifies non-constant volatility over time and allows the GARCH parameters to vary over time following a Markov process, is combined with copula functions and EVT to formulate the Bayesian Markov-switching GJR-GARCH(1,1) copula-EVT VaR model, which is then used to forecast the level of risk on financial asset returns. We further propose a new method for threshold selection in EVT analysis, which we term the hybrid method. Empirical and back-testing results show that the proposed VaR models capture VaR reasonably well in periods of calm and in periods of crisis. Public Library of Science 2018-06-22 /pmc/articles/PMC6014648/ /pubmed/29933383 http://dx.doi.org/10.1371/journal.pone.0198753 Text en © 2018 Sampid et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Sampid, Marius Galabe Hasim, Haslifah M. Dai, Hongsheng Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model |
title | Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model |
title_full | Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model |
title_fullStr | Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model |
title_full_unstemmed | Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model |
title_short | Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model |
title_sort | refining value-at-risk estimates using a bayesian markov-switching gjr-garch copula-evt model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6014648/ https://www.ncbi.nlm.nih.gov/pubmed/29933383 http://dx.doi.org/10.1371/journal.pone.0198753 |
work_keys_str_mv | AT sampidmariusgalabe refiningvalueatriskestimatesusingabayesianmarkovswitchinggjrgarchcopulaevtmodel AT hasimhaslifahm refiningvalueatriskestimatesusingabayesianmarkovswitchinggjrgarchcopulaevtmodel AT daihongsheng refiningvalueatriskestimatesusingabayesianmarkovswitchinggjrgarchcopulaevtmodel |