Cargando…

Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model

In this paper, we propose a model for forecasting Value-at-Risk (VaR) using a Bayesian Markov-switching GJR-GARCH(1,1) model with skewed Student’s-t innovation, copula functions and extreme value theory. A Bayesian Markov-switching GJR-GARCH(1,1) model that identifies non-constant volatility over ti...

Descripción completa

Detalles Bibliográficos
Autores principales: Sampid, Marius Galabe, Hasim, Haslifah M., Dai, Hongsheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6014648/
https://www.ncbi.nlm.nih.gov/pubmed/29933383
http://dx.doi.org/10.1371/journal.pone.0198753
_version_ 1783334265438601216
author Sampid, Marius Galabe
Hasim, Haslifah M.
Dai, Hongsheng
author_facet Sampid, Marius Galabe
Hasim, Haslifah M.
Dai, Hongsheng
author_sort Sampid, Marius Galabe
collection PubMed
description In this paper, we propose a model for forecasting Value-at-Risk (VaR) using a Bayesian Markov-switching GJR-GARCH(1,1) model with skewed Student’s-t innovation, copula functions and extreme value theory. A Bayesian Markov-switching GJR-GARCH(1,1) model that identifies non-constant volatility over time and allows the GARCH parameters to vary over time following a Markov process, is combined with copula functions and EVT to formulate the Bayesian Markov-switching GJR-GARCH(1,1) copula-EVT VaR model, which is then used to forecast the level of risk on financial asset returns. We further propose a new method for threshold selection in EVT analysis, which we term the hybrid method. Empirical and back-testing results show that the proposed VaR models capture VaR reasonably well in periods of calm and in periods of crisis.
format Online
Article
Text
id pubmed-6014648
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-60146482018-07-06 Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model Sampid, Marius Galabe Hasim, Haslifah M. Dai, Hongsheng PLoS One Research Article In this paper, we propose a model for forecasting Value-at-Risk (VaR) using a Bayesian Markov-switching GJR-GARCH(1,1) model with skewed Student’s-t innovation, copula functions and extreme value theory. A Bayesian Markov-switching GJR-GARCH(1,1) model that identifies non-constant volatility over time and allows the GARCH parameters to vary over time following a Markov process, is combined with copula functions and EVT to formulate the Bayesian Markov-switching GJR-GARCH(1,1) copula-EVT VaR model, which is then used to forecast the level of risk on financial asset returns. We further propose a new method for threshold selection in EVT analysis, which we term the hybrid method. Empirical and back-testing results show that the proposed VaR models capture VaR reasonably well in periods of calm and in periods of crisis. Public Library of Science 2018-06-22 /pmc/articles/PMC6014648/ /pubmed/29933383 http://dx.doi.org/10.1371/journal.pone.0198753 Text en © 2018 Sampid et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Sampid, Marius Galabe
Hasim, Haslifah M.
Dai, Hongsheng
Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model
title Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model
title_full Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model
title_fullStr Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model
title_full_unstemmed Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model
title_short Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model
title_sort refining value-at-risk estimates using a bayesian markov-switching gjr-garch copula-evt model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6014648/
https://www.ncbi.nlm.nih.gov/pubmed/29933383
http://dx.doi.org/10.1371/journal.pone.0198753
work_keys_str_mv AT sampidmariusgalabe refiningvalueatriskestimatesusingabayesianmarkovswitchinggjrgarchcopulaevtmodel
AT hasimhaslifahm refiningvalueatriskestimatesusingabayesianmarkovswitchinggjrgarchcopulaevtmodel
AT daihongsheng refiningvalueatriskestimatesusingabayesianmarkovswitchinggjrgarchcopulaevtmodel