Cargando…
Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model
In this paper, we propose a model for forecasting Value-at-Risk (VaR) using a Bayesian Markov-switching GJR-GARCH(1,1) model with skewed Student’s-t innovation, copula functions and extreme value theory. A Bayesian Markov-switching GJR-GARCH(1,1) model that identifies non-constant volatility over ti...
Autores principales: | Sampid, Marius Galabe, Hasim, Haslifah M., Dai, Hongsheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6014648/ https://www.ncbi.nlm.nih.gov/pubmed/29933383 http://dx.doi.org/10.1371/journal.pone.0198753 |
Ejemplares similares
-
Estimating Risk of Natural Gas Portfolios by Using GARCH-EVT-Copula Model
por: Tang, Jiechen, et al.
Publicado: (2015) -
Stochastic properties and pricing of bitcoin using a GJR-GARCH model with conditional skewness and kurtosis components
por: Theodossiou, Panayiotis, et al.
Publicado: (2022) -
Dependence structure of CAT bonds and portfolio diversification: a copula-GARCH approach
por: Haffar, Adlane, et al.
Publicado: (2022) -
Modeling Markov Switching ARMA-GARCH Neural Networks Models and an Application to Forecasting Stock Returns
por: Bildirici, Melike, et al.
Publicado: (2014) -
Introduction to Bayesian estimation and copula models of dependence
por: Shemyakin, Arkady, et al.
Publicado: (2017)