Cargando…

A methodology for experimental evaluation of signal detection methods in spectrum sensing

Lack of unallocated spectrum and increasing demand for bandwidth in wireless networks is forcing new devices and technologies to share frequency bands. Spectrum sensing is a key enabler for frequency sharing and there is a large body of existing work on signal detection methods. However a unified me...

Descripción completa

Detalles Bibliográficos
Autores principales: Šolc, Tomaž, Mohorčič, Mihael, Fortuna, Carolina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6014670/
https://www.ncbi.nlm.nih.gov/pubmed/29933398
http://dx.doi.org/10.1371/journal.pone.0199550
Descripción
Sumario:Lack of unallocated spectrum and increasing demand for bandwidth in wireless networks is forcing new devices and technologies to share frequency bands. Spectrum sensing is a key enabler for frequency sharing and there is a large body of existing work on signal detection methods. However a unified methodology that would be suitable for objective comparison of detection methods based on experimental evaluations is missing. In this paper we propose such a methodology comprised of seven steps that can be applied to evaluate methods in simulation or practical experiments. Using the proposed methodology, we perform the most comprehensive experimental evaluation of signal detection methods to date: we compare energy detection, covariance-based and eigenvalue-based detection and cyclostationary detection. We measure minimal detectable signal power, sensitivity to noise power changes and computational complexity using an experimental setup that covers typical capabilities from low-cost embedded to high-end software defined radio devices. Presented results validate our premise that a unified methodology is valuable in obtaining reliable and reproducible comparisons of signal detection methods.