Cargando…

Microstructures and mechanical properties of in situ TiC–β–Ti–Nb composites with ultrafine grains fabricated by high-pressure sintering

In this study, an in situ β–Ti–Nb composites reinforced with TiC particles with an ultrafine grain size were fabricated using a powder metallurgical (PM) method. The microstructures and mechanical properties of the composites were characterized using X-ray diffraction (XRD) analysis, scanning electr...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Z., Zhang, D. C., Gong, L. J., Lin, J. G., Wen, Cuie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6014990/
https://www.ncbi.nlm.nih.gov/pubmed/29934506
http://dx.doi.org/10.1038/s41598-018-27535-6
Descripción
Sumario:In this study, an in situ β–Ti–Nb composites reinforced with TiC particles with an ultrafine grain size were fabricated using a powder metallurgical (PM) method. The microstructures and mechanical properties of the composites were characterized using X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and compression tests. TiC particles were formed in the ball-milled powders after annealing at 600 °C due to a chemical reaction between stearic acid and titanium. Using high-pressure sintering (HPS) on an apparatus with six tungsten carbide anvils, a fully dense β–Ti–Nb composite reinforced with fine in situ TiC particles was obtained. The TiC particles exhibit particle sizes of ~500 nm, uniformly distributed in the composite matrix, which had grain sizes of ~600 nm. Thus, the TiC–β–Ti–Nb composite show very high compression yield strength and relatively high plasticity contributed by grain refinement and TiC particles strengthening. The composite with 45 vol.% TiC exhibited excellent mechanical properties, with a yield compressive strength of 1990 MPa and plastic strain of 9.12%. More over, a modified rule-of-mixture (ROM) was presented to describe the combined strengthening effect of grain refinement and TiC particles.