Cargando…
Uncovering pseudotemporal trajectories with covariates from single cell and bulk expression data
Pseudotime algorithms can be employed to extract latent temporal information from cross-sectional data sets allowing dynamic biological processes to be studied in situations where the collection of time series data is challenging or prohibitive. Computational techniques have arisen from single-cell...
Autores principales: | Campbell, Kieran R, Yau, Christopher |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6015076/ https://www.ncbi.nlm.nih.gov/pubmed/29934517 http://dx.doi.org/10.1038/s41467-018-04696-6 |
Ejemplares similares
-
Unraveling the timeline of gene expression: A pseudotemporal trajectory analysis of single-cell RNA sequencing data
por: Cheng, Jinming, et al.
Publicado: (2023) -
Single-Cell Fluorescence Analysis of Pseudotemporal Ordered Cells Provides Protein Expression Dynamics for Neuronal Differentiation
por: Song, Zhichao, et al.
Publicado: (2019) -
switchde: inference of switch-like differential expression along single-cell trajectories
por: Campbell, Kieran R, et al.
Publicado: (2017) -
Pseudotemporal ordering of spatial lymphoid tissue microenvironment profiles trails Unclassified DLBCL at the periphery of the follicle
por: Tripodo, Claudio, et al.
Publicado: (2023) -
Probabilistic modeling of bifurcations in single-cell gene expression data using a Bayesian mixture of factor analyzers
por: Campbell, Kieran R, et al.
Publicado: (2017)