Cargando…
Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients
BACKGROUND: Whereas heart failure (HF) is a complex clinical syndrome, conventional approaches to its management have treated it as a singular disease, leading to inadequate patient care and inefficient clinical trials. We hypothesized that applying advanced analytics to a large cohort of HF patient...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6015420/ https://www.ncbi.nlm.nih.gov/pubmed/29650709 http://dx.doi.org/10.1161/JAHA.117.008081 |
_version_ | 1783334408997044224 |
---|---|
author | Ahmad, Tariq Lund, Lars H. Rao, Pooja Ghosh, Rohit Warier, Prashant Vaccaro, Benjamin Dahlström, Ulf O'Connor, Christopher M. Felker, G. Michael Desai, Nihar R. |
author_facet | Ahmad, Tariq Lund, Lars H. Rao, Pooja Ghosh, Rohit Warier, Prashant Vaccaro, Benjamin Dahlström, Ulf O'Connor, Christopher M. Felker, G. Michael Desai, Nihar R. |
author_sort | Ahmad, Tariq |
collection | PubMed |
description | BACKGROUND: Whereas heart failure (HF) is a complex clinical syndrome, conventional approaches to its management have treated it as a singular disease, leading to inadequate patient care and inefficient clinical trials. We hypothesized that applying advanced analytics to a large cohort of HF patients would improve prognostication of outcomes, identify distinct patient phenotypes, and detect heterogeneity in treatment response. METHODS AND RESULTS: The Swedish Heart Failure Registry is a nationwide registry collecting detailed demographic, clinical, laboratory, and medication data and linked to databases with outcome information. We applied random forest modeling to identify predictors of 1‐year survival. Cluster analysis was performed and validated using serial bootstrapping. Association between clusters and survival was assessed with Cox proportional hazards modeling and interaction testing was performed to assess for heterogeneity in response to HF pharmacotherapy across propensity‐matched clusters. Our study included 44 886 HF patients enrolled in the Swedish Heart Failure Registry between 2000 and 2012. Random forest modeling demonstrated excellent calibration and discrimination for survival (C‐statistic=0.83) whereas left ventricular ejection fraction did not (C‐statistic=0.52): there were no meaningful differences per strata of left ventricular ejection fraction (1‐year survival: 80%, 81%, 83%, and 84%). Cluster analysis using the 8 highest predictive variables identified 4 clinically relevant subgroups of HF with marked differences in 1‐year survival. There were significant interactions between propensity‐matched clusters (across age, sex, and left ventricular ejection fraction and the following medications: diuretics, angiotensin‐converting enzyme inhibitors, β‐blockers, and nitrates, P<0.001, all). CONCLUSIONS: Machine learning algorithms accurately predicted outcomes in a large data set of HF patients. Cluster analysis identified 4 distinct phenotypes that differed significantly in outcomes and in response to therapeutics. Use of these novel analytic approaches has the potential to enhance effectiveness of current therapies and transform future HF clinical trials. |
format | Online Article Text |
id | pubmed-6015420 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-60154202018-07-05 Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients Ahmad, Tariq Lund, Lars H. Rao, Pooja Ghosh, Rohit Warier, Prashant Vaccaro, Benjamin Dahlström, Ulf O'Connor, Christopher M. Felker, G. Michael Desai, Nihar R. J Am Heart Assoc Original Research BACKGROUND: Whereas heart failure (HF) is a complex clinical syndrome, conventional approaches to its management have treated it as a singular disease, leading to inadequate patient care and inefficient clinical trials. We hypothesized that applying advanced analytics to a large cohort of HF patients would improve prognostication of outcomes, identify distinct patient phenotypes, and detect heterogeneity in treatment response. METHODS AND RESULTS: The Swedish Heart Failure Registry is a nationwide registry collecting detailed demographic, clinical, laboratory, and medication data and linked to databases with outcome information. We applied random forest modeling to identify predictors of 1‐year survival. Cluster analysis was performed and validated using serial bootstrapping. Association between clusters and survival was assessed with Cox proportional hazards modeling and interaction testing was performed to assess for heterogeneity in response to HF pharmacotherapy across propensity‐matched clusters. Our study included 44 886 HF patients enrolled in the Swedish Heart Failure Registry between 2000 and 2012. Random forest modeling demonstrated excellent calibration and discrimination for survival (C‐statistic=0.83) whereas left ventricular ejection fraction did not (C‐statistic=0.52): there were no meaningful differences per strata of left ventricular ejection fraction (1‐year survival: 80%, 81%, 83%, and 84%). Cluster analysis using the 8 highest predictive variables identified 4 clinically relevant subgroups of HF with marked differences in 1‐year survival. There were significant interactions between propensity‐matched clusters (across age, sex, and left ventricular ejection fraction and the following medications: diuretics, angiotensin‐converting enzyme inhibitors, β‐blockers, and nitrates, P<0.001, all). CONCLUSIONS: Machine learning algorithms accurately predicted outcomes in a large data set of HF patients. Cluster analysis identified 4 distinct phenotypes that differed significantly in outcomes and in response to therapeutics. Use of these novel analytic approaches has the potential to enhance effectiveness of current therapies and transform future HF clinical trials. John Wiley and Sons Inc. 2018-04-12 /pmc/articles/PMC6015420/ /pubmed/29650709 http://dx.doi.org/10.1161/JAHA.117.008081 Text en © 2018 The Authors and Qure.ai. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Original Research Ahmad, Tariq Lund, Lars H. Rao, Pooja Ghosh, Rohit Warier, Prashant Vaccaro, Benjamin Dahlström, Ulf O'Connor, Christopher M. Felker, G. Michael Desai, Nihar R. Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients |
title | Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients |
title_full | Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients |
title_fullStr | Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients |
title_full_unstemmed | Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients |
title_short | Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients |
title_sort | machine learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6015420/ https://www.ncbi.nlm.nih.gov/pubmed/29650709 http://dx.doi.org/10.1161/JAHA.117.008081 |
work_keys_str_mv | AT ahmadtariq machinelearningmethodsimproveprognosticationidentifyclinicallydistinctphenotypesanddetectheterogeneityinresponsetotherapyinalargecohortofheartfailurepatients AT lundlarsh machinelearningmethodsimproveprognosticationidentifyclinicallydistinctphenotypesanddetectheterogeneityinresponsetotherapyinalargecohortofheartfailurepatients AT raopooja machinelearningmethodsimproveprognosticationidentifyclinicallydistinctphenotypesanddetectheterogeneityinresponsetotherapyinalargecohortofheartfailurepatients AT ghoshrohit machinelearningmethodsimproveprognosticationidentifyclinicallydistinctphenotypesanddetectheterogeneityinresponsetotherapyinalargecohortofheartfailurepatients AT warierprashant machinelearningmethodsimproveprognosticationidentifyclinicallydistinctphenotypesanddetectheterogeneityinresponsetotherapyinalargecohortofheartfailurepatients AT vaccarobenjamin machinelearningmethodsimproveprognosticationidentifyclinicallydistinctphenotypesanddetectheterogeneityinresponsetotherapyinalargecohortofheartfailurepatients AT dahlstromulf machinelearningmethodsimproveprognosticationidentifyclinicallydistinctphenotypesanddetectheterogeneityinresponsetotherapyinalargecohortofheartfailurepatients AT oconnorchristopherm machinelearningmethodsimproveprognosticationidentifyclinicallydistinctphenotypesanddetectheterogeneityinresponsetotherapyinalargecohortofheartfailurepatients AT felkergmichael machinelearningmethodsimproveprognosticationidentifyclinicallydistinctphenotypesanddetectheterogeneityinresponsetotherapyinalargecohortofheartfailurepatients AT desainiharr machinelearningmethodsimproveprognosticationidentifyclinicallydistinctphenotypesanddetectheterogeneityinresponsetotherapyinalargecohortofheartfailurepatients |