Cargando…
Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures
Noninvasive biological imaging requires materials capable of interacting with deeply penetrant forms of energy such as magnetic fields and sound waves. Here, we show that gas vesicles, a unique class of gas-filled protein nanostructures with differential magnetic susceptibility relative to water, ca...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6015773/ https://www.ncbi.nlm.nih.gov/pubmed/29483636 http://dx.doi.org/10.1038/s41563-018-0023-7 |
_version_ | 1783334464487686144 |
---|---|
author | Lu, George J. Farhadi, Arash Szablowski, Jerzy O. Lee-Gosselin, Audrey Barnes, Samuel R. Lakshmanan, Anupama Bourdeau, Raymond W. Shapiro, Mikhail G. |
author_facet | Lu, George J. Farhadi, Arash Szablowski, Jerzy O. Lee-Gosselin, Audrey Barnes, Samuel R. Lakshmanan, Anupama Bourdeau, Raymond W. Shapiro, Mikhail G. |
author_sort | Lu, George J. |
collection | PubMed |
description | Noninvasive biological imaging requires materials capable of interacting with deeply penetrant forms of energy such as magnetic fields and sound waves. Here, we show that gas vesicles, a unique class of gas-filled protein nanostructures with differential magnetic susceptibility relative to water, can produce robust contrast in magnetic resonance imaging (MRI) at sub-nanomolar concentrations, and that this contrast can be inactivated with ultrasound in situ to enable background-free imaging. We demonstrate this capability in vitro, in cells expressing these nanostructures as genetically encoded reporters, and in three model in vivo scenarios. Genetic variants of gas vesicles, differing in their magnetic or mechanical phenotypes, allow multiplexed imaging using parametric MRI and differential acoustic sensitivity. Additionally, clustering-induced changes in MRI contrast enable the design of dynamic molecular sensors. By coupling the complementary physics of MRI and ultrasound, this nanomaterial gives rise to a distinct modality for molecular imaging with unique advantages and capabilities. |
format | Online Article Text |
id | pubmed-6015773 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
record_format | MEDLINE/PubMed |
spelling | pubmed-60157732018-08-26 Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures Lu, George J. Farhadi, Arash Szablowski, Jerzy O. Lee-Gosselin, Audrey Barnes, Samuel R. Lakshmanan, Anupama Bourdeau, Raymond W. Shapiro, Mikhail G. Nat Mater Article Noninvasive biological imaging requires materials capable of interacting with deeply penetrant forms of energy such as magnetic fields and sound waves. Here, we show that gas vesicles, a unique class of gas-filled protein nanostructures with differential magnetic susceptibility relative to water, can produce robust contrast in magnetic resonance imaging (MRI) at sub-nanomolar concentrations, and that this contrast can be inactivated with ultrasound in situ to enable background-free imaging. We demonstrate this capability in vitro, in cells expressing these nanostructures as genetically encoded reporters, and in three model in vivo scenarios. Genetic variants of gas vesicles, differing in their magnetic or mechanical phenotypes, allow multiplexed imaging using parametric MRI and differential acoustic sensitivity. Additionally, clustering-induced changes in MRI contrast enable the design of dynamic molecular sensors. By coupling the complementary physics of MRI and ultrasound, this nanomaterial gives rise to a distinct modality for molecular imaging with unique advantages and capabilities. 2018-02-26 2018-05 /pmc/articles/PMC6015773/ /pubmed/29483636 http://dx.doi.org/10.1038/s41563-018-0023-7 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Lu, George J. Farhadi, Arash Szablowski, Jerzy O. Lee-Gosselin, Audrey Barnes, Samuel R. Lakshmanan, Anupama Bourdeau, Raymond W. Shapiro, Mikhail G. Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures |
title | Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures |
title_full | Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures |
title_fullStr | Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures |
title_full_unstemmed | Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures |
title_short | Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures |
title_sort | acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6015773/ https://www.ncbi.nlm.nih.gov/pubmed/29483636 http://dx.doi.org/10.1038/s41563-018-0023-7 |
work_keys_str_mv | AT lugeorgej acousticallymodulatedmagneticresonanceimagingofgasfilledproteinnanostructures AT farhadiarash acousticallymodulatedmagneticresonanceimagingofgasfilledproteinnanostructures AT szablowskijerzyo acousticallymodulatedmagneticresonanceimagingofgasfilledproteinnanostructures AT leegosselinaudrey acousticallymodulatedmagneticresonanceimagingofgasfilledproteinnanostructures AT barnessamuelr acousticallymodulatedmagneticresonanceimagingofgasfilledproteinnanostructures AT lakshmanananupama acousticallymodulatedmagneticresonanceimagingofgasfilledproteinnanostructures AT bourdeauraymondw acousticallymodulatedmagneticresonanceimagingofgasfilledproteinnanostructures AT shapiromikhailg acousticallymodulatedmagneticresonanceimagingofgasfilledproteinnanostructures |