Cargando…

Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures

Noninvasive biological imaging requires materials capable of interacting with deeply penetrant forms of energy such as magnetic fields and sound waves. Here, we show that gas vesicles, a unique class of gas-filled protein nanostructures with differential magnetic susceptibility relative to water, ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, George J., Farhadi, Arash, Szablowski, Jerzy O., Lee-Gosselin, Audrey, Barnes, Samuel R., Lakshmanan, Anupama, Bourdeau, Raymond W., Shapiro, Mikhail G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6015773/
https://www.ncbi.nlm.nih.gov/pubmed/29483636
http://dx.doi.org/10.1038/s41563-018-0023-7
_version_ 1783334464487686144
author Lu, George J.
Farhadi, Arash
Szablowski, Jerzy O.
Lee-Gosselin, Audrey
Barnes, Samuel R.
Lakshmanan, Anupama
Bourdeau, Raymond W.
Shapiro, Mikhail G.
author_facet Lu, George J.
Farhadi, Arash
Szablowski, Jerzy O.
Lee-Gosselin, Audrey
Barnes, Samuel R.
Lakshmanan, Anupama
Bourdeau, Raymond W.
Shapiro, Mikhail G.
author_sort Lu, George J.
collection PubMed
description Noninvasive biological imaging requires materials capable of interacting with deeply penetrant forms of energy such as magnetic fields and sound waves. Here, we show that gas vesicles, a unique class of gas-filled protein nanostructures with differential magnetic susceptibility relative to water, can produce robust contrast in magnetic resonance imaging (MRI) at sub-nanomolar concentrations, and that this contrast can be inactivated with ultrasound in situ to enable background-free imaging. We demonstrate this capability in vitro, in cells expressing these nanostructures as genetically encoded reporters, and in three model in vivo scenarios. Genetic variants of gas vesicles, differing in their magnetic or mechanical phenotypes, allow multiplexed imaging using parametric MRI and differential acoustic sensitivity. Additionally, clustering-induced changes in MRI contrast enable the design of dynamic molecular sensors. By coupling the complementary physics of MRI and ultrasound, this nanomaterial gives rise to a distinct modality for molecular imaging with unique advantages and capabilities.
format Online
Article
Text
id pubmed-6015773
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-60157732018-08-26 Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures Lu, George J. Farhadi, Arash Szablowski, Jerzy O. Lee-Gosselin, Audrey Barnes, Samuel R. Lakshmanan, Anupama Bourdeau, Raymond W. Shapiro, Mikhail G. Nat Mater Article Noninvasive biological imaging requires materials capable of interacting with deeply penetrant forms of energy such as magnetic fields and sound waves. Here, we show that gas vesicles, a unique class of gas-filled protein nanostructures with differential magnetic susceptibility relative to water, can produce robust contrast in magnetic resonance imaging (MRI) at sub-nanomolar concentrations, and that this contrast can be inactivated with ultrasound in situ to enable background-free imaging. We demonstrate this capability in vitro, in cells expressing these nanostructures as genetically encoded reporters, and in three model in vivo scenarios. Genetic variants of gas vesicles, differing in their magnetic or mechanical phenotypes, allow multiplexed imaging using parametric MRI and differential acoustic sensitivity. Additionally, clustering-induced changes in MRI contrast enable the design of dynamic molecular sensors. By coupling the complementary physics of MRI and ultrasound, this nanomaterial gives rise to a distinct modality for molecular imaging with unique advantages and capabilities. 2018-02-26 2018-05 /pmc/articles/PMC6015773/ /pubmed/29483636 http://dx.doi.org/10.1038/s41563-018-0023-7 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Lu, George J.
Farhadi, Arash
Szablowski, Jerzy O.
Lee-Gosselin, Audrey
Barnes, Samuel R.
Lakshmanan, Anupama
Bourdeau, Raymond W.
Shapiro, Mikhail G.
Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures
title Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures
title_full Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures
title_fullStr Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures
title_full_unstemmed Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures
title_short Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures
title_sort acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6015773/
https://www.ncbi.nlm.nih.gov/pubmed/29483636
http://dx.doi.org/10.1038/s41563-018-0023-7
work_keys_str_mv AT lugeorgej acousticallymodulatedmagneticresonanceimagingofgasfilledproteinnanostructures
AT farhadiarash acousticallymodulatedmagneticresonanceimagingofgasfilledproteinnanostructures
AT szablowskijerzyo acousticallymodulatedmagneticresonanceimagingofgasfilledproteinnanostructures
AT leegosselinaudrey acousticallymodulatedmagneticresonanceimagingofgasfilledproteinnanostructures
AT barnessamuelr acousticallymodulatedmagneticresonanceimagingofgasfilledproteinnanostructures
AT lakshmanananupama acousticallymodulatedmagneticresonanceimagingofgasfilledproteinnanostructures
AT bourdeauraymondw acousticallymodulatedmagneticresonanceimagingofgasfilledproteinnanostructures
AT shapiromikhailg acousticallymodulatedmagneticresonanceimagingofgasfilledproteinnanostructures