Cargando…
Effectiveness of Interventions to Modulate the Rumen Microbiota Composition and Function in Pre-ruminant and Ruminant Lambs
Modulating the assembly of the ruminal microbiota might have practical implications in production. We tested how an early-life dietary intervention in lambs influences the diversity and function of the ruminal microbiota during and after the intervention. Microbiota resilience during a repeated diet...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6015893/ https://www.ncbi.nlm.nih.gov/pubmed/29967596 http://dx.doi.org/10.3389/fmicb.2018.01273 |
_version_ | 1783334475477811200 |
---|---|
author | Saro, Cristina Hohenester, Ulli M. Bernard, Mickael Lagrée, Marie Martin, Cécile Doreau, Michel Boudra, Hamid Popova, Milka Morgavi, Diego P. |
author_facet | Saro, Cristina Hohenester, Ulli M. Bernard, Mickael Lagrée, Marie Martin, Cécile Doreau, Michel Boudra, Hamid Popova, Milka Morgavi, Diego P. |
author_sort | Saro, Cristina |
collection | PubMed |
description | Modulating the assembly of the ruminal microbiota might have practical implications in production. We tested how an early-life dietary intervention in lambs influences the diversity and function of the ruminal microbiota during and after the intervention. Microbiota resilience during a repeated dietary intervention was also tested. The treatment, aiming to mitigate enteric methane emissions, combined garlic essential oil and linseed oil. Fifty-six lambs and their dams were allocated to two groups and treatment (T1) or placebo (C1) was drenched from birth until 10 weeks of life. Lambs were weaned at 8 weeks. From 16 to 20 weeks, lambs in each group were divided in two subgroups that received (T1–T2 and C1–T2) or not (T1–C2 and C1–C2) the same treatment. Measurements were done at 8, 14, and 20 weeks. Average daily gain was similar between groups. Methane production was reduced by treatment at 8 and 20 weeks but at 14 weeks it was similar between C1 and T1. Interestingly, early-life treated lambs displayed a numerical increase (P = 0.12) in methane emissions at 20 weeks compared with non-treated lambs. Concentration of VFA was not affected by the intervention at 8 or 14 weeks but a lower concentration was observed in T2 lambs compared with C2 at week 20. Metataxonomics (rRNA gene) revealed differences in archaeal communities between groups of lambs when treatment was applied (weeks 8 and 20); whereas, in accord with methane emissions, these differences disappeared when treatment was discontinued (week 14). Protozoal community structure was not affected by treatment. In contrast, bacterial community structure differed between treated and non-treated lambs during and after the intervention. Rumen and urine LC-MS and NMR metabolomics at week 20 separated C2 from T2 lambs and correlation analysis highlighted interactions between microbes and metabolites, notably that of methylated compounds and Methanomassiliicocceae methanogens. This study demonstrates that a long-term early-life intervention induced modifications in the composition of the rumen bacterial community that persisted after the intervention ceased with little or no effect on archaeal and protozoal communities. However, there was no persistency of the early-life intervention on methanogenesis indicating resilience for this function. |
format | Online Article Text |
id | pubmed-6015893 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-60158932018-07-02 Effectiveness of Interventions to Modulate the Rumen Microbiota Composition and Function in Pre-ruminant and Ruminant Lambs Saro, Cristina Hohenester, Ulli M. Bernard, Mickael Lagrée, Marie Martin, Cécile Doreau, Michel Boudra, Hamid Popova, Milka Morgavi, Diego P. Front Microbiol Microbiology Modulating the assembly of the ruminal microbiota might have practical implications in production. We tested how an early-life dietary intervention in lambs influences the diversity and function of the ruminal microbiota during and after the intervention. Microbiota resilience during a repeated dietary intervention was also tested. The treatment, aiming to mitigate enteric methane emissions, combined garlic essential oil and linseed oil. Fifty-six lambs and their dams were allocated to two groups and treatment (T1) or placebo (C1) was drenched from birth until 10 weeks of life. Lambs were weaned at 8 weeks. From 16 to 20 weeks, lambs in each group were divided in two subgroups that received (T1–T2 and C1–T2) or not (T1–C2 and C1–C2) the same treatment. Measurements were done at 8, 14, and 20 weeks. Average daily gain was similar between groups. Methane production was reduced by treatment at 8 and 20 weeks but at 14 weeks it was similar between C1 and T1. Interestingly, early-life treated lambs displayed a numerical increase (P = 0.12) in methane emissions at 20 weeks compared with non-treated lambs. Concentration of VFA was not affected by the intervention at 8 or 14 weeks but a lower concentration was observed in T2 lambs compared with C2 at week 20. Metataxonomics (rRNA gene) revealed differences in archaeal communities between groups of lambs when treatment was applied (weeks 8 and 20); whereas, in accord with methane emissions, these differences disappeared when treatment was discontinued (week 14). Protozoal community structure was not affected by treatment. In contrast, bacterial community structure differed between treated and non-treated lambs during and after the intervention. Rumen and urine LC-MS and NMR metabolomics at week 20 separated C2 from T2 lambs and correlation analysis highlighted interactions between microbes and metabolites, notably that of methylated compounds and Methanomassiliicocceae methanogens. This study demonstrates that a long-term early-life intervention induced modifications in the composition of the rumen bacterial community that persisted after the intervention ceased with little or no effect on archaeal and protozoal communities. However, there was no persistency of the early-life intervention on methanogenesis indicating resilience for this function. Frontiers Media S.A. 2018-06-18 /pmc/articles/PMC6015893/ /pubmed/29967596 http://dx.doi.org/10.3389/fmicb.2018.01273 Text en Copyright © 2018 Saro, Hohenester, Bernard, Lagrée, Martin, Doreau, Boudra, Popova and Morgavi. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Saro, Cristina Hohenester, Ulli M. Bernard, Mickael Lagrée, Marie Martin, Cécile Doreau, Michel Boudra, Hamid Popova, Milka Morgavi, Diego P. Effectiveness of Interventions to Modulate the Rumen Microbiota Composition and Function in Pre-ruminant and Ruminant Lambs |
title | Effectiveness of Interventions to Modulate the Rumen Microbiota Composition and Function in Pre-ruminant and Ruminant Lambs |
title_full | Effectiveness of Interventions to Modulate the Rumen Microbiota Composition and Function in Pre-ruminant and Ruminant Lambs |
title_fullStr | Effectiveness of Interventions to Modulate the Rumen Microbiota Composition and Function in Pre-ruminant and Ruminant Lambs |
title_full_unstemmed | Effectiveness of Interventions to Modulate the Rumen Microbiota Composition and Function in Pre-ruminant and Ruminant Lambs |
title_short | Effectiveness of Interventions to Modulate the Rumen Microbiota Composition and Function in Pre-ruminant and Ruminant Lambs |
title_sort | effectiveness of interventions to modulate the rumen microbiota composition and function in pre-ruminant and ruminant lambs |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6015893/ https://www.ncbi.nlm.nih.gov/pubmed/29967596 http://dx.doi.org/10.3389/fmicb.2018.01273 |
work_keys_str_mv | AT sarocristina effectivenessofinterventionstomodulatetherumenmicrobiotacompositionandfunctioninpreruminantandruminantlambs AT hohenesterullim effectivenessofinterventionstomodulatetherumenmicrobiotacompositionandfunctioninpreruminantandruminantlambs AT bernardmickael effectivenessofinterventionstomodulatetherumenmicrobiotacompositionandfunctioninpreruminantandruminantlambs AT lagreemarie effectivenessofinterventionstomodulatetherumenmicrobiotacompositionandfunctioninpreruminantandruminantlambs AT martincecile effectivenessofinterventionstomodulatetherumenmicrobiotacompositionandfunctioninpreruminantandruminantlambs AT doreaumichel effectivenessofinterventionstomodulatetherumenmicrobiotacompositionandfunctioninpreruminantandruminantlambs AT boudrahamid effectivenessofinterventionstomodulatetherumenmicrobiotacompositionandfunctioninpreruminantandruminantlambs AT popovamilka effectivenessofinterventionstomodulatetherumenmicrobiotacompositionandfunctioninpreruminantandruminantlambs AT morgavidiegop effectivenessofinterventionstomodulatetherumenmicrobiotacompositionandfunctioninpreruminantandruminantlambs |