Cargando…

Octaarginine-modified gold nanoparticles enhance the radiosensitivity of human colorectal cancer cell line LS180 to megavoltage radiation

BACKGROUND: This study investigated the effectiveness and underpinning mechanisms of radiosensitization using octaarginine (R8)-modified gold nanoparticle–poly(ethylene glycol) (GNP-PEG-R8) in colorectal cancer cell line LS180 to megavoltage radiotherapy in vitro. METHOD: In-house synthesized GNP-PE...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xuyang, Wang, Hao, Coulter, Jonathan Andrew, Yang, Ruijie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6016276/
https://www.ncbi.nlm.nih.gov/pubmed/29950834
http://dx.doi.org/10.2147/IJN.S161157
Descripción
Sumario:BACKGROUND: This study investigated the effectiveness and underpinning mechanisms of radiosensitization using octaarginine (R8)-modified gold nanoparticle–poly(ethylene glycol) (GNP-PEG-R8) in colorectal cancer cell line LS180 to megavoltage radiotherapy in vitro. METHOD: In-house synthesized GNP-PEG was characterized by transmission electron microscopy, dynamic light scattering, ultraviolet–visible spectrophotometry, and X-ray photoelectron spectroscopy. Inductively coupled plasma mass spectroscopy was used to quantify internalization. Direct cytotoxicity was established using the Cell Counting Kit-8, while radiosensitivity was determined using the gold standard in vitro clonogenic assay. Cell-cycle distribution, apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were analyzed by flow cytometry, further exploring the key mechanisms driving GNP-PEG-R8 radiosensitization. RESULTS: The core GNP diameter was 6.3±1.1 nm (mean±SD). Following functionalization, the hydrodynamic diameter increased to 19.7±2.8 nm and 27.8±1.8 nm for GNP-PEG and GNP-PEG-R8, with respective surface plasmon resonance peaks of 515 nm and 525 nm. Furthermore, incorporation of the R8 significantly increased nanoparticle internalization compared to GNP-PEG (p<0.001) over a 1 h treatment period. Functionalized GNPs confer little cytotoxicity below 400 nM. In clonogenic assays, radiation combined with GNP-PEG-R8 induced a significant reduction in colony formation compared with radiation alone, generating a sensitizer enhancement ratio of 1.59. Furthermore, GNP-PEG-R8 plus radiation predominantly induced cell-cycle arrest in the G2/M phase, increasing G2/M stalling by an additional 10% over GNP-PEG, markedly promoting apoptosis (p<0.001). Finally, ROS levels and alterations in MMP were investigated, indicating a highly significant (p<0.001) change in both parameters following the combined treatment of GNP-PEG-R8 and radiation over radiation alone. CONCLUSION: R8-modified GNPs were efficiently internalized by LS180 cells, exhibiting minimal cytotoxicity. This yielded significant radiosensitization in response to megavoltage radiation. GNP-PEG-R8 may enhance radiosensitivity by arresting cell cycle and inducing apoptosis, with elevated ROS identified as the likely initiator.