Cargando…
Cigarette smoke up‐regulates PDE3 and PDE4 to decrease cAMP in airway cells
BACKGROUND AND PURPOSE: cAMP is a central second messenger that broadly regulates cell function and can underpin pathophysiology. In chronic obstructive pulmonary disease, a lung disease primarily provoked by cigarette smoke (CS), the activation of cAMP‐dependent pathways, via inhibition of hydrolyz...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6016635/ https://www.ncbi.nlm.nih.gov/pubmed/29722436 http://dx.doi.org/10.1111/bph.14347 |
_version_ | 1783334601735798784 |
---|---|
author | Zuo, Haoxiao Han, Bing Poppinga, Wilfred J Ringnalda, Lennard Kistemaker, Loes E M Halayko, Andrew J Gosens, Reinoud Nikolaev, Viacheslav O Schmidt, Martina |
author_facet | Zuo, Haoxiao Han, Bing Poppinga, Wilfred J Ringnalda, Lennard Kistemaker, Loes E M Halayko, Andrew J Gosens, Reinoud Nikolaev, Viacheslav O Schmidt, Martina |
author_sort | Zuo, Haoxiao |
collection | PubMed |
description | BACKGROUND AND PURPOSE: cAMP is a central second messenger that broadly regulates cell function and can underpin pathophysiology. In chronic obstructive pulmonary disease, a lung disease primarily provoked by cigarette smoke (CS), the activation of cAMP‐dependent pathways, via inhibition of hydrolyzing PDEs, is a major therapeutic strategy. Mechanisms that disrupt cAMP signalling in airway cells, in particular regulation of endogenous PDEs, are poorly understood. EXPERIMENTAL APPROACH: We used a novel Förster resonance energy transfer (FRET) based cAMP biosensor in mice in vivo, ex vivo precision cut lung slices (PCLS) and in human cell models, in vitro, to track the effects of CS exposure. KEY RESULTS: Under fenoterol stimulation, FRET responses to cilostamide were significantly increased in in vivo, ex vivo PCLS exposed to CS and in human airway smooth muscle cells exposed to CS extract. FRET signals to rolipram were only increased in the in vivo CS model. Under basal conditions, FRET responses to cilostamide and rolipram were significantly increased in in vivo, ex vivo PCLS exposed to CS. Elevated FRET signals to rolipram correlated with a protein up‐regulation of PDE4 subtypes. In ex vivo PCLS exposed to CS extract, rolipram reversed down‐regulation of ciliary beating frequency, whereas only cilostamide significantly increased airway relaxation of methacholine pre‐contracted airways. CONCLUSION AND IMPLICATIONS: Exposure to CS, in vitro or in vivo, up‐regulated expression and activity of both PDE3 and PDE4, which affected real‐time cAMP dynamics. These mechanisms determine the availability of cAMP and can contribute to CS‐induced pulmonary pathophysiology. |
format | Online Article Text |
id | pubmed-6016635 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-60166352018-07-12 Cigarette smoke up‐regulates PDE3 and PDE4 to decrease cAMP in airway cells Zuo, Haoxiao Han, Bing Poppinga, Wilfred J Ringnalda, Lennard Kistemaker, Loes E M Halayko, Andrew J Gosens, Reinoud Nikolaev, Viacheslav O Schmidt, Martina Br J Pharmacol Research Papers BACKGROUND AND PURPOSE: cAMP is a central second messenger that broadly regulates cell function and can underpin pathophysiology. In chronic obstructive pulmonary disease, a lung disease primarily provoked by cigarette smoke (CS), the activation of cAMP‐dependent pathways, via inhibition of hydrolyzing PDEs, is a major therapeutic strategy. Mechanisms that disrupt cAMP signalling in airway cells, in particular regulation of endogenous PDEs, are poorly understood. EXPERIMENTAL APPROACH: We used a novel Förster resonance energy transfer (FRET) based cAMP biosensor in mice in vivo, ex vivo precision cut lung slices (PCLS) and in human cell models, in vitro, to track the effects of CS exposure. KEY RESULTS: Under fenoterol stimulation, FRET responses to cilostamide were significantly increased in in vivo, ex vivo PCLS exposed to CS and in human airway smooth muscle cells exposed to CS extract. FRET signals to rolipram were only increased in the in vivo CS model. Under basal conditions, FRET responses to cilostamide and rolipram were significantly increased in in vivo, ex vivo PCLS exposed to CS. Elevated FRET signals to rolipram correlated with a protein up‐regulation of PDE4 subtypes. In ex vivo PCLS exposed to CS extract, rolipram reversed down‐regulation of ciliary beating frequency, whereas only cilostamide significantly increased airway relaxation of methacholine pre‐contracted airways. CONCLUSION AND IMPLICATIONS: Exposure to CS, in vitro or in vivo, up‐regulated expression and activity of both PDE3 and PDE4, which affected real‐time cAMP dynamics. These mechanisms determine the availability of cAMP and can contribute to CS‐induced pulmonary pathophysiology. John Wiley and Sons Inc. 2018-06-03 2018-07 /pmc/articles/PMC6016635/ /pubmed/29722436 http://dx.doi.org/10.1111/bph.14347 Text en © 2018 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Papers Zuo, Haoxiao Han, Bing Poppinga, Wilfred J Ringnalda, Lennard Kistemaker, Loes E M Halayko, Andrew J Gosens, Reinoud Nikolaev, Viacheslav O Schmidt, Martina Cigarette smoke up‐regulates PDE3 and PDE4 to decrease cAMP in airway cells |
title | Cigarette smoke up‐regulates PDE3 and PDE4 to decrease cAMP in airway cells |
title_full | Cigarette smoke up‐regulates PDE3 and PDE4 to decrease cAMP in airway cells |
title_fullStr | Cigarette smoke up‐regulates PDE3 and PDE4 to decrease cAMP in airway cells |
title_full_unstemmed | Cigarette smoke up‐regulates PDE3 and PDE4 to decrease cAMP in airway cells |
title_short | Cigarette smoke up‐regulates PDE3 and PDE4 to decrease cAMP in airway cells |
title_sort | cigarette smoke up‐regulates pde3 and pde4 to decrease camp in airway cells |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6016635/ https://www.ncbi.nlm.nih.gov/pubmed/29722436 http://dx.doi.org/10.1111/bph.14347 |
work_keys_str_mv | AT zuohaoxiao cigarettesmokeupregulatespde3andpde4todecreasecampinairwaycells AT hanbing cigarettesmokeupregulatespde3andpde4todecreasecampinairwaycells AT poppingawilfredj cigarettesmokeupregulatespde3andpde4todecreasecampinairwaycells AT ringnaldalennard cigarettesmokeupregulatespde3andpde4todecreasecampinairwaycells AT kistemakerloesem cigarettesmokeupregulatespde3andpde4todecreasecampinairwaycells AT halaykoandrewj cigarettesmokeupregulatespde3andpde4todecreasecampinairwaycells AT gosensreinoud cigarettesmokeupregulatespde3andpde4todecreasecampinairwaycells AT nikolaevviacheslavo cigarettesmokeupregulatespde3andpde4todecreasecampinairwaycells AT schmidtmartina cigarettesmokeupregulatespde3andpde4todecreasecampinairwaycells |