Cargando…

Plasma adiponectin levels are associated with circulating inflammatory cytokines in autoantibody positive first-degree relatives of rheumatoid arthritis patients

BACKGROUND: Extra-articular manifestations of rheumatoid arthritis (RA), potentially due to systemic inflammation, include cardiovascular disease and sarcopenic obesity. Adiponectin, an adipose-derived cytokine, has been implicated in inflammatory processes in RA, but little is known regarding its a...

Descripción completa

Detalles Bibliográficos
Autores principales: Hughes-Austin, Jan M., Deane, Kevin D., Giles, Jon T., Derber, Lezlie A., Zerbe, Gary O., Dabelea, Dana M., Sokolove, Jeremy, Robinson, William H., Holers, V. Michael, Norris, Jill M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6016921/
https://www.ncbi.nlm.nih.gov/pubmed/29940013
http://dx.doi.org/10.1371/journal.pone.0199578
Descripción
Sumario:BACKGROUND: Extra-articular manifestations of rheumatoid arthritis (RA), potentially due to systemic inflammation, include cardiovascular disease and sarcopenic obesity. Adiponectin, an adipose-derived cytokine, has been implicated in inflammatory processes in RA, but little is known regarding its association with inflammation in a pre-clinical period. Therefore, we investigated whether adiponectin was associated with inflammatory markers in individuals at risk for RA, and whether RA-related autoimmunity modifies these associations. METHODS: We analyzed samples from 144 first-degree relatives (FDRs) of RA probands, of whom 23 were positive for anti-cyclic citrullinated peptide antibody and/or ≥ 2 rheumatoid factor isotypes (IgM, IgG or IgA). We called this phenotype the ‘high risk autoantibody profile (HRP)’ as it has been shown in prior work to be >96% specific for future RA. We measured adiponectin, cytokines, and high-sensitivity C-reactive protein (hsCRP). Using linear mixed effects models, we evaluated interaction between HRP positivity and adiponectin on inflammatory markers, adjusting for age, sex, ethnicity, body mass index, pack-years smoking, and use of cholesterol-lowering medications. RESULTS: In everyone, adiponectin concentration was inversely associated with hsCRP and IL-1β in adjusted models, where a 1% higher adiponectin was associated with a 26% lower hsCRP (p = 0.04) and a 26% lower IL-1β (p = 0.04). Significant interactions between HRP and adiponectin for associations with GM-CSF, IL-6, and IL-9 were detected in fully adjusted models (p = 0.0006, p = 0.006, p = 0.01, respectively). In HRP positive FDRs but not HRP negative FDRs, a 1% higher adiponectin was associated with 97% higher GM-CSF, 73% higher IL-6, and 54% higher IL-9 concentrations. CONCLUSIONS: Adiponectin associates with inflammatory markers, and these associations differ in individuals with a high-risk autoantibody profile compared with those without. The interaction between adiponectin and autoimmunity warrants further investigation into the potential systemic effects of RA-related autoantibodies and adiponectin on inflammation in the absence of clinically apparent RA.