Cargando…

Magnetic Properties of Metal–Organic Coordination Networks Based on 3d Transition Metal Atoms

The magnetic anisotropy and exchange coupling between spins localized at the positions of 3d transition metal atoms forming two-dimensional metal–organic coordination networks (MOCNs) grown on a Au(111) metal surface are studied. In particular, we consider MOCNs made of Ni or Mn metal centers linked...

Descripción completa

Detalles Bibliográficos
Autores principales: Blanco-Rey, María, Sarasola, Ane, Nistor, Corneliu, Persichetti, Luca, Stamm, Christian, Piamonteze, Cinthia, Gambardella, Pietro, Stepanow, Sebastian, Otrokov, Mikhail M., Golovach, Vitaly N., Arnau, Andres
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017066/
https://www.ncbi.nlm.nih.gov/pubmed/29677142
http://dx.doi.org/10.3390/molecules23040964
_version_ 1783334666616438784
author Blanco-Rey, María
Sarasola, Ane
Nistor, Corneliu
Persichetti, Luca
Stamm, Christian
Piamonteze, Cinthia
Gambardella, Pietro
Stepanow, Sebastian
Otrokov, Mikhail M.
Golovach, Vitaly N.
Arnau, Andres
author_facet Blanco-Rey, María
Sarasola, Ane
Nistor, Corneliu
Persichetti, Luca
Stamm, Christian
Piamonteze, Cinthia
Gambardella, Pietro
Stepanow, Sebastian
Otrokov, Mikhail M.
Golovach, Vitaly N.
Arnau, Andres
author_sort Blanco-Rey, María
collection PubMed
description The magnetic anisotropy and exchange coupling between spins localized at the positions of 3d transition metal atoms forming two-dimensional metal–organic coordination networks (MOCNs) grown on a Au(111) metal surface are studied. In particular, we consider MOCNs made of Ni or Mn metal centers linked by 7,7,8,8-tetracyanoquinodimethane (TCNQ) organic ligands, which form rectangular networks with 1:1 stoichiometry. Based on the analysis of X-ray magnetic circular dichroism (XMCD) data taken at T = 2.5 K, we find that Ni atoms in the Ni–TCNQ MOCNs are coupled ferromagnetically and do not show any significant magnetic anisotropy, while Mn atoms in the Mn–TCNQ MOCNs are coupled antiferromagnetically and do show a weak magnetic anisotropy with in-plane magnetization. We explain these observations using both a model Hamiltonian based on mean-field Weiss theory and density functional theory calculations that include spin–orbit coupling. Our main conclusion is that the antiferromagnetic coupling between Mn spins and the in-plane magnetization of the Mn spins can be explained by neglecting effects due to the presence of the Au(111) surface, while for Ni–TCNQ the metal surface plays a role in determining the absence of magnetic anisotropy in the system.
format Online
Article
Text
id pubmed-6017066
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-60170662018-11-13 Magnetic Properties of Metal–Organic Coordination Networks Based on 3d Transition Metal Atoms Blanco-Rey, María Sarasola, Ane Nistor, Corneliu Persichetti, Luca Stamm, Christian Piamonteze, Cinthia Gambardella, Pietro Stepanow, Sebastian Otrokov, Mikhail M. Golovach, Vitaly N. Arnau, Andres Molecules Article The magnetic anisotropy and exchange coupling between spins localized at the positions of 3d transition metal atoms forming two-dimensional metal–organic coordination networks (MOCNs) grown on a Au(111) metal surface are studied. In particular, we consider MOCNs made of Ni or Mn metal centers linked by 7,7,8,8-tetracyanoquinodimethane (TCNQ) organic ligands, which form rectangular networks with 1:1 stoichiometry. Based on the analysis of X-ray magnetic circular dichroism (XMCD) data taken at T = 2.5 K, we find that Ni atoms in the Ni–TCNQ MOCNs are coupled ferromagnetically and do not show any significant magnetic anisotropy, while Mn atoms in the Mn–TCNQ MOCNs are coupled antiferromagnetically and do show a weak magnetic anisotropy with in-plane magnetization. We explain these observations using both a model Hamiltonian based on mean-field Weiss theory and density functional theory calculations that include spin–orbit coupling. Our main conclusion is that the antiferromagnetic coupling between Mn spins and the in-plane magnetization of the Mn spins can be explained by neglecting effects due to the presence of the Au(111) surface, while for Ni–TCNQ the metal surface plays a role in determining the absence of magnetic anisotropy in the system. MDPI 2018-04-20 /pmc/articles/PMC6017066/ /pubmed/29677142 http://dx.doi.org/10.3390/molecules23040964 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Blanco-Rey, María
Sarasola, Ane
Nistor, Corneliu
Persichetti, Luca
Stamm, Christian
Piamonteze, Cinthia
Gambardella, Pietro
Stepanow, Sebastian
Otrokov, Mikhail M.
Golovach, Vitaly N.
Arnau, Andres
Magnetic Properties of Metal–Organic Coordination Networks Based on 3d Transition Metal Atoms
title Magnetic Properties of Metal–Organic Coordination Networks Based on 3d Transition Metal Atoms
title_full Magnetic Properties of Metal–Organic Coordination Networks Based on 3d Transition Metal Atoms
title_fullStr Magnetic Properties of Metal–Organic Coordination Networks Based on 3d Transition Metal Atoms
title_full_unstemmed Magnetic Properties of Metal–Organic Coordination Networks Based on 3d Transition Metal Atoms
title_short Magnetic Properties of Metal–Organic Coordination Networks Based on 3d Transition Metal Atoms
title_sort magnetic properties of metal–organic coordination networks based on 3d transition metal atoms
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017066/
https://www.ncbi.nlm.nih.gov/pubmed/29677142
http://dx.doi.org/10.3390/molecules23040964
work_keys_str_mv AT blancoreymaria magneticpropertiesofmetalorganiccoordinationnetworksbasedon3dtransitionmetalatoms
AT sarasolaane magneticpropertiesofmetalorganiccoordinationnetworksbasedon3dtransitionmetalatoms
AT nistorcorneliu magneticpropertiesofmetalorganiccoordinationnetworksbasedon3dtransitionmetalatoms
AT persichettiluca magneticpropertiesofmetalorganiccoordinationnetworksbasedon3dtransitionmetalatoms
AT stammchristian magneticpropertiesofmetalorganiccoordinationnetworksbasedon3dtransitionmetalatoms
AT piamontezecinthia magneticpropertiesofmetalorganiccoordinationnetworksbasedon3dtransitionmetalatoms
AT gambardellapietro magneticpropertiesofmetalorganiccoordinationnetworksbasedon3dtransitionmetalatoms
AT stepanowsebastian magneticpropertiesofmetalorganiccoordinationnetworksbasedon3dtransitionmetalatoms
AT otrokovmikhailm magneticpropertiesofmetalorganiccoordinationnetworksbasedon3dtransitionmetalatoms
AT golovachvitalyn magneticpropertiesofmetalorganiccoordinationnetworksbasedon3dtransitionmetalatoms
AT arnauandres magneticpropertiesofmetalorganiccoordinationnetworksbasedon3dtransitionmetalatoms