Cargando…
Magnetic Properties of Metal–Organic Coordination Networks Based on 3d Transition Metal Atoms
The magnetic anisotropy and exchange coupling between spins localized at the positions of 3d transition metal atoms forming two-dimensional metal–organic coordination networks (MOCNs) grown on a Au(111) metal surface are studied. In particular, we consider MOCNs made of Ni or Mn metal centers linked...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017066/ https://www.ncbi.nlm.nih.gov/pubmed/29677142 http://dx.doi.org/10.3390/molecules23040964 |
_version_ | 1783334666616438784 |
---|---|
author | Blanco-Rey, María Sarasola, Ane Nistor, Corneliu Persichetti, Luca Stamm, Christian Piamonteze, Cinthia Gambardella, Pietro Stepanow, Sebastian Otrokov, Mikhail M. Golovach, Vitaly N. Arnau, Andres |
author_facet | Blanco-Rey, María Sarasola, Ane Nistor, Corneliu Persichetti, Luca Stamm, Christian Piamonteze, Cinthia Gambardella, Pietro Stepanow, Sebastian Otrokov, Mikhail M. Golovach, Vitaly N. Arnau, Andres |
author_sort | Blanco-Rey, María |
collection | PubMed |
description | The magnetic anisotropy and exchange coupling between spins localized at the positions of 3d transition metal atoms forming two-dimensional metal–organic coordination networks (MOCNs) grown on a Au(111) metal surface are studied. In particular, we consider MOCNs made of Ni or Mn metal centers linked by 7,7,8,8-tetracyanoquinodimethane (TCNQ) organic ligands, which form rectangular networks with 1:1 stoichiometry. Based on the analysis of X-ray magnetic circular dichroism (XMCD) data taken at T = 2.5 K, we find that Ni atoms in the Ni–TCNQ MOCNs are coupled ferromagnetically and do not show any significant magnetic anisotropy, while Mn atoms in the Mn–TCNQ MOCNs are coupled antiferromagnetically and do show a weak magnetic anisotropy with in-plane magnetization. We explain these observations using both a model Hamiltonian based on mean-field Weiss theory and density functional theory calculations that include spin–orbit coupling. Our main conclusion is that the antiferromagnetic coupling between Mn spins and the in-plane magnetization of the Mn spins can be explained by neglecting effects due to the presence of the Au(111) surface, while for Ni–TCNQ the metal surface plays a role in determining the absence of magnetic anisotropy in the system. |
format | Online Article Text |
id | pubmed-6017066 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-60170662018-11-13 Magnetic Properties of Metal–Organic Coordination Networks Based on 3d Transition Metal Atoms Blanco-Rey, María Sarasola, Ane Nistor, Corneliu Persichetti, Luca Stamm, Christian Piamonteze, Cinthia Gambardella, Pietro Stepanow, Sebastian Otrokov, Mikhail M. Golovach, Vitaly N. Arnau, Andres Molecules Article The magnetic anisotropy and exchange coupling between spins localized at the positions of 3d transition metal atoms forming two-dimensional metal–organic coordination networks (MOCNs) grown on a Au(111) metal surface are studied. In particular, we consider MOCNs made of Ni or Mn metal centers linked by 7,7,8,8-tetracyanoquinodimethane (TCNQ) organic ligands, which form rectangular networks with 1:1 stoichiometry. Based on the analysis of X-ray magnetic circular dichroism (XMCD) data taken at T = 2.5 K, we find that Ni atoms in the Ni–TCNQ MOCNs are coupled ferromagnetically and do not show any significant magnetic anisotropy, while Mn atoms in the Mn–TCNQ MOCNs are coupled antiferromagnetically and do show a weak magnetic anisotropy with in-plane magnetization. We explain these observations using both a model Hamiltonian based on mean-field Weiss theory and density functional theory calculations that include spin–orbit coupling. Our main conclusion is that the antiferromagnetic coupling between Mn spins and the in-plane magnetization of the Mn spins can be explained by neglecting effects due to the presence of the Au(111) surface, while for Ni–TCNQ the metal surface plays a role in determining the absence of magnetic anisotropy in the system. MDPI 2018-04-20 /pmc/articles/PMC6017066/ /pubmed/29677142 http://dx.doi.org/10.3390/molecules23040964 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Blanco-Rey, María Sarasola, Ane Nistor, Corneliu Persichetti, Luca Stamm, Christian Piamonteze, Cinthia Gambardella, Pietro Stepanow, Sebastian Otrokov, Mikhail M. Golovach, Vitaly N. Arnau, Andres Magnetic Properties of Metal–Organic Coordination Networks Based on 3d Transition Metal Atoms |
title | Magnetic Properties of Metal–Organic Coordination Networks Based on 3d Transition Metal Atoms |
title_full | Magnetic Properties of Metal–Organic Coordination Networks Based on 3d Transition Metal Atoms |
title_fullStr | Magnetic Properties of Metal–Organic Coordination Networks Based on 3d Transition Metal Atoms |
title_full_unstemmed | Magnetic Properties of Metal–Organic Coordination Networks Based on 3d Transition Metal Atoms |
title_short | Magnetic Properties of Metal–Organic Coordination Networks Based on 3d Transition Metal Atoms |
title_sort | magnetic properties of metal–organic coordination networks based on 3d transition metal atoms |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017066/ https://www.ncbi.nlm.nih.gov/pubmed/29677142 http://dx.doi.org/10.3390/molecules23040964 |
work_keys_str_mv | AT blancoreymaria magneticpropertiesofmetalorganiccoordinationnetworksbasedon3dtransitionmetalatoms AT sarasolaane magneticpropertiesofmetalorganiccoordinationnetworksbasedon3dtransitionmetalatoms AT nistorcorneliu magneticpropertiesofmetalorganiccoordinationnetworksbasedon3dtransitionmetalatoms AT persichettiluca magneticpropertiesofmetalorganiccoordinationnetworksbasedon3dtransitionmetalatoms AT stammchristian magneticpropertiesofmetalorganiccoordinationnetworksbasedon3dtransitionmetalatoms AT piamontezecinthia magneticpropertiesofmetalorganiccoordinationnetworksbasedon3dtransitionmetalatoms AT gambardellapietro magneticpropertiesofmetalorganiccoordinationnetworksbasedon3dtransitionmetalatoms AT stepanowsebastian magneticpropertiesofmetalorganiccoordinationnetworksbasedon3dtransitionmetalatoms AT otrokovmikhailm magneticpropertiesofmetalorganiccoordinationnetworksbasedon3dtransitionmetalatoms AT golovachvitalyn magneticpropertiesofmetalorganiccoordinationnetworksbasedon3dtransitionmetalatoms AT arnauandres magneticpropertiesofmetalorganiccoordinationnetworksbasedon3dtransitionmetalatoms |