Cargando…
Cloning and Functional Characterization of Two 4-Coumarate: CoA Ligase Genes from Selaginella moellendorffii
Selaginella is an extant lycopodiophyte genus, which is representative of an ancient lineage of tracheophytes. The important evolutionary status makes it a valuable resource for the study of metabolic evolution in vascular plants. 4-coumarate: CoA ligase (4CL) is the pivotal enzyme that controls the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017068/ https://www.ncbi.nlm.nih.gov/pubmed/29518887 http://dx.doi.org/10.3390/molecules23030595 |
Sumario: | Selaginella is an extant lycopodiophyte genus, which is representative of an ancient lineage of tracheophytes. The important evolutionary status makes it a valuable resource for the study of metabolic evolution in vascular plants. 4-coumarate: CoA ligase (4CL) is the pivotal enzyme that controls the flow of carbon through the phenylpropanoid metabolic pathway into the specific lignin, flavonoid, and wall-bound phenolics biosynthesis pathways. Although 4CLs have been extensively characterized in other vascular plants, little is known of their functions in Selaginella. Here, we isolated two 4CL genes (Sm4CL1 and Sm4CL2) from Selaginella moellendorffii. Based on the enzymatic activities of the recombinant proteins, both of these genes encoded bona fide 4CLs. The 4CL isoforms in S. moellendorffii have different activities: Sm4CL2 was more active than Sm4CL1. The enzymatic properties and gene expression patterns indicated that the 4CL genes have been conserved in the evolution of vascular plants. |
---|