Cargando…
Development of Dipicolylamine-Modified Cyclodextrins for the Design of Selective Guest-Responsive Receptors for ATP
The construction of supramolecular recognition systems based on specific host–guest interactions has been studied in order to design selective chemical sensors. In this study, guest-responsive receptors for ATP have been designed with cyclodextrins (CyDs) as a basic prototype of the turn-on type flu...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017074/ https://www.ncbi.nlm.nih.gov/pubmed/29534528 http://dx.doi.org/10.3390/molecules23030635 |
_version_ | 1783334668452495360 |
---|---|
author | Yamada, Tatsuru Fujiwara, Shoji Fujita, Kyohhei Tsuchido, Yuji Hashimoto, Takeshi Hayashita, Takashi |
author_facet | Yamada, Tatsuru Fujiwara, Shoji Fujita, Kyohhei Tsuchido, Yuji Hashimoto, Takeshi Hayashita, Takashi |
author_sort | Yamada, Tatsuru |
collection | PubMed |
description | The construction of supramolecular recognition systems based on specific host–guest interactions has been studied in order to design selective chemical sensors. In this study, guest-responsive receptors for ATP have been designed with cyclodextrins (CyDs) as a basic prototype of the turn-on type fluorescent indicator. We synthesized dipicolylamine (DPA)-modified CyD–Cu(2+) complexes (Cu·1α, Cu·1β, and Cu·1γ), and evaluated their recognition capabilities toward phosphoric acid derivatives in water. The UV-Vis absorption and fluorescence spectra revealed that Cu·1β selectively recognized ATP over other organic and inorganic phosphates, and that β-CyD had the most suitable cavity size for complexation with ATP. The 1D and 2D NMR analyses suggested that the ATP recognition was based on the host–guest interaction between the adenine moiety of ATP and the CyD cavity, as well as the recognition of phosphoric moieties by the Cu(2+)–DPA complex site. The specific interactions between the CyD cavity and the nucleobases enabled us to distinguish ATP from other nucleoside triphosphates, such as guanosine triphosphate (GTP), uridine triphosphate (UTP), and cytidine triphosphate (CTP). This study clarified the basic mechanisms of molecular recognition by modified CyDs, and suggested the potential for further application of CyDs in the design of highly selective supramolecular recognition systems for certain molecular targets in water. |
format | Online Article Text |
id | pubmed-6017074 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-60170742018-11-13 Development of Dipicolylamine-Modified Cyclodextrins for the Design of Selective Guest-Responsive Receptors for ATP Yamada, Tatsuru Fujiwara, Shoji Fujita, Kyohhei Tsuchido, Yuji Hashimoto, Takeshi Hayashita, Takashi Molecules Concept Paper The construction of supramolecular recognition systems based on specific host–guest interactions has been studied in order to design selective chemical sensors. In this study, guest-responsive receptors for ATP have been designed with cyclodextrins (CyDs) as a basic prototype of the turn-on type fluorescent indicator. We synthesized dipicolylamine (DPA)-modified CyD–Cu(2+) complexes (Cu·1α, Cu·1β, and Cu·1γ), and evaluated their recognition capabilities toward phosphoric acid derivatives in water. The UV-Vis absorption and fluorescence spectra revealed that Cu·1β selectively recognized ATP over other organic and inorganic phosphates, and that β-CyD had the most suitable cavity size for complexation with ATP. The 1D and 2D NMR analyses suggested that the ATP recognition was based on the host–guest interaction between the adenine moiety of ATP and the CyD cavity, as well as the recognition of phosphoric moieties by the Cu(2+)–DPA complex site. The specific interactions between the CyD cavity and the nucleobases enabled us to distinguish ATP from other nucleoside triphosphates, such as guanosine triphosphate (GTP), uridine triphosphate (UTP), and cytidine triphosphate (CTP). This study clarified the basic mechanisms of molecular recognition by modified CyDs, and suggested the potential for further application of CyDs in the design of highly selective supramolecular recognition systems for certain molecular targets in water. MDPI 2018-03-12 /pmc/articles/PMC6017074/ /pubmed/29534528 http://dx.doi.org/10.3390/molecules23030635 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Concept Paper Yamada, Tatsuru Fujiwara, Shoji Fujita, Kyohhei Tsuchido, Yuji Hashimoto, Takeshi Hayashita, Takashi Development of Dipicolylamine-Modified Cyclodextrins for the Design of Selective Guest-Responsive Receptors for ATP |
title | Development of Dipicolylamine-Modified Cyclodextrins for the Design of Selective Guest-Responsive Receptors for ATP |
title_full | Development of Dipicolylamine-Modified Cyclodextrins for the Design of Selective Guest-Responsive Receptors for ATP |
title_fullStr | Development of Dipicolylamine-Modified Cyclodextrins for the Design of Selective Guest-Responsive Receptors for ATP |
title_full_unstemmed | Development of Dipicolylamine-Modified Cyclodextrins for the Design of Selective Guest-Responsive Receptors for ATP |
title_short | Development of Dipicolylamine-Modified Cyclodextrins for the Design of Selective Guest-Responsive Receptors for ATP |
title_sort | development of dipicolylamine-modified cyclodextrins for the design of selective guest-responsive receptors for atp |
topic | Concept Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017074/ https://www.ncbi.nlm.nih.gov/pubmed/29534528 http://dx.doi.org/10.3390/molecules23030635 |
work_keys_str_mv | AT yamadatatsuru developmentofdipicolylaminemodifiedcyclodextrinsforthedesignofselectiveguestresponsivereceptorsforatp AT fujiwarashoji developmentofdipicolylaminemodifiedcyclodextrinsforthedesignofselectiveguestresponsivereceptorsforatp AT fujitakyohhei developmentofdipicolylaminemodifiedcyclodextrinsforthedesignofselectiveguestresponsivereceptorsforatp AT tsuchidoyuji developmentofdipicolylaminemodifiedcyclodextrinsforthedesignofselectiveguestresponsivereceptorsforatp AT hashimototakeshi developmentofdipicolylaminemodifiedcyclodextrinsforthedesignofselectiveguestresponsivereceptorsforatp AT hayashitatakashi developmentofdipicolylaminemodifiedcyclodextrinsforthedesignofselectiveguestresponsivereceptorsforatp |