Cargando…
Simultaneous Separation of Eight Lignans in Forsythia suspensa by β-Cyclodextrin-Modified Capillary Zone Electrophoresis
The aim of the study was to develop an alternative capillary zone electrophoresis (CZE) for simultaneous determination of phillyrin (1), phillygenin (2), epipinoresinol-4-O-β-glucoside (3), pinoresinol-4-O-β-glucoside (4), lariciresinol (5), pinoresinol (6), isolariciresinol (7) and vladinol D (8) i...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017137/ https://www.ncbi.nlm.nih.gov/pubmed/29495375 http://dx.doi.org/10.3390/molecules23030514 |
_version_ | 1783334682669088768 |
---|---|
author | Liang, Jun Gong, Feng-Qiu Sun, Hui-Min |
author_facet | Liang, Jun Gong, Feng-Qiu Sun, Hui-Min |
author_sort | Liang, Jun |
collection | PubMed |
description | The aim of the study was to develop an alternative capillary zone electrophoresis (CZE) for simultaneous determination of phillyrin (1), phillygenin (2), epipinoresinol-4-O-β-glucoside (3), pinoresinol-4-O-β-glucoside (4), lariciresinol (5), pinoresinol (6), isolariciresinol (7) and vladinol D (8) in Forsythia suspensa. The structural types of lignans 1–8 could be attributed to bisepoxylignans (1–4 and 6), monoepoxylignans (5 and 8) and cyclolignan (7). The major difficulties in the CZE separation of 1–8 could be summarization as the simultaneous presence of free lignans (1, 2 and 5–8) and lignan glucosides (3 and 4) and simultaneous occurrence of two pairs of isomers (3 and 4 as well as 5 and 7). Without the addition of β-CD and methanol, the resolution of these analytes was quite poor. However, in this study, compounds 1–8 were excellently separated from each other within 15 min under optimized conditions with a borax running buffer (40 mM borax, pH 10.30) containing 2 mM β-CD and 5% methanol (v/v) at the voltage of 20 kV, temperature of 35 °C and detection wavelength of 234 nm. Validation of the method included tests of linearity, precision, repeatability, stability and accuracy. In addition, the method offered inherent advantages such as lower analytical cost, no need of specific columns and use of small amounts of organic solvents and reagents. Finally, this green and economic CZE was successfully applied for the determination of these bioactive components 1–8 in F. suspensa fruits and its commercial extracts. |
format | Online Article Text |
id | pubmed-6017137 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-60171372018-11-13 Simultaneous Separation of Eight Lignans in Forsythia suspensa by β-Cyclodextrin-Modified Capillary Zone Electrophoresis Liang, Jun Gong, Feng-Qiu Sun, Hui-Min Molecules Article The aim of the study was to develop an alternative capillary zone electrophoresis (CZE) for simultaneous determination of phillyrin (1), phillygenin (2), epipinoresinol-4-O-β-glucoside (3), pinoresinol-4-O-β-glucoside (4), lariciresinol (5), pinoresinol (6), isolariciresinol (7) and vladinol D (8) in Forsythia suspensa. The structural types of lignans 1–8 could be attributed to bisepoxylignans (1–4 and 6), monoepoxylignans (5 and 8) and cyclolignan (7). The major difficulties in the CZE separation of 1–8 could be summarization as the simultaneous presence of free lignans (1, 2 and 5–8) and lignan glucosides (3 and 4) and simultaneous occurrence of two pairs of isomers (3 and 4 as well as 5 and 7). Without the addition of β-CD and methanol, the resolution of these analytes was quite poor. However, in this study, compounds 1–8 were excellently separated from each other within 15 min under optimized conditions with a borax running buffer (40 mM borax, pH 10.30) containing 2 mM β-CD and 5% methanol (v/v) at the voltage of 20 kV, temperature of 35 °C and detection wavelength of 234 nm. Validation of the method included tests of linearity, precision, repeatability, stability and accuracy. In addition, the method offered inherent advantages such as lower analytical cost, no need of specific columns and use of small amounts of organic solvents and reagents. Finally, this green and economic CZE was successfully applied for the determination of these bioactive components 1–8 in F. suspensa fruits and its commercial extracts. MDPI 2018-02-26 /pmc/articles/PMC6017137/ /pubmed/29495375 http://dx.doi.org/10.3390/molecules23030514 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liang, Jun Gong, Feng-Qiu Sun, Hui-Min Simultaneous Separation of Eight Lignans in Forsythia suspensa by β-Cyclodextrin-Modified Capillary Zone Electrophoresis |
title | Simultaneous Separation of Eight Lignans in Forsythia suspensa by β-Cyclodextrin-Modified Capillary Zone Electrophoresis |
title_full | Simultaneous Separation of Eight Lignans in Forsythia suspensa by β-Cyclodextrin-Modified Capillary Zone Electrophoresis |
title_fullStr | Simultaneous Separation of Eight Lignans in Forsythia suspensa by β-Cyclodextrin-Modified Capillary Zone Electrophoresis |
title_full_unstemmed | Simultaneous Separation of Eight Lignans in Forsythia suspensa by β-Cyclodextrin-Modified Capillary Zone Electrophoresis |
title_short | Simultaneous Separation of Eight Lignans in Forsythia suspensa by β-Cyclodextrin-Modified Capillary Zone Electrophoresis |
title_sort | simultaneous separation of eight lignans in forsythia suspensa by β-cyclodextrin-modified capillary zone electrophoresis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017137/ https://www.ncbi.nlm.nih.gov/pubmed/29495375 http://dx.doi.org/10.3390/molecules23030514 |
work_keys_str_mv | AT liangjun simultaneousseparationofeightlignansinforsythiasuspensabybcyclodextrinmodifiedcapillaryzoneelectrophoresis AT gongfengqiu simultaneousseparationofeightlignansinforsythiasuspensabybcyclodextrinmodifiedcapillaryzoneelectrophoresis AT sunhuimin simultaneousseparationofeightlignansinforsythiasuspensabybcyclodextrinmodifiedcapillaryzoneelectrophoresis |