Cargando…

Synthesis of Dihydrooxepino[3,2-c]Pyrazoles via Claisen Rearrangement and Ring-Closing Metathesis from 4-Allyloxy-1H-pyrazoles

Synthesis of novel pyrazole-fused heterocycles, i.e., dihydro-1H- or 2H-oxepino[3,2-c]pyrazoles (6 or 7) from 4-allyloxy-1H-pyrazoles (1) via combination of Claisen rearrangement and ring-closing metathesis (RCM) has been achieved. A suitable catalyst for the RCM of 5-allyl-4-allyloxy-1H-pyrazoles (...

Descripción completa

Detalles Bibliográficos
Autores principales: Usami, Yoshihide, Kohno, Aoi, Yoneyama, Hiroki, Harusawa, Shinya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017168/
https://www.ncbi.nlm.nih.gov/pubmed/29509713
http://dx.doi.org/10.3390/molecules23030592
Descripción
Sumario:Synthesis of novel pyrazole-fused heterocycles, i.e., dihydro-1H- or 2H-oxepino[3,2-c]pyrazoles (6 or 7) from 4-allyloxy-1H-pyrazoles (1) via combination of Claisen rearrangement and ring-closing metathesis (RCM) has been achieved. A suitable catalyst for the RCM of 5-allyl-4-allyloxy-1H-pyrazoles (4) was proved to be the Grubbs second generation catalyst (Grubbs(2nd)) to give the predicted RCM product at room temperature in three hours. The same reactions of the regioisomer, 3-allyl-4-allyloxy-1H-pyrazoles (5), also proceeded to give the corresponding RCM products. On the other hand, microwave aided RCM at 140 °C on both of 4 and 5 afforded mixtures of isomeric products with double bond rearrangement from normal RCM products in spite of remarkable reduction of the reaction time to 10 min.