Cargando…
Cold PSM, but not TRAIL, triggers autophagic cell death: A therapeutic advantage of PSM over TRAIL
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and cold plasma-stimulated medium (PSM) are promising novel anticancer tools due to their strong anticancer activities and high tumor-selectivity. The present study demonstrated that PSM and TRAIL may trigger autophagy in human malignan...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017219/ https://www.ncbi.nlm.nih.gov/pubmed/29845256 http://dx.doi.org/10.3892/ijo.2018.4413 |
_version_ | 1783334698840227840 |
---|---|
author | Ito, Tomohisa Ando, Takashi Suzuki-Karasaki, Miki Tokunaga, Tomohiko Yoshida, Yukihiro Ochiai, Toyoko Tokuhashi, Yasuaki Suzuki-Karasaki, Yoshihiro |
author_facet | Ito, Tomohisa Ando, Takashi Suzuki-Karasaki, Miki Tokunaga, Tomohiko Yoshida, Yukihiro Ochiai, Toyoko Tokuhashi, Yasuaki Suzuki-Karasaki, Yoshihiro |
author_sort | Ito, Tomohisa |
collection | PubMed |
description | Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and cold plasma-stimulated medium (PSM) are promising novel anticancer tools due to their strong anticancer activities and high tumor-selectivity. The present study demonstrated that PSM and TRAIL may trigger autophagy in human malignant melanoma and osteosarcoma cells. Live-cell imaging revealed that even under nutritional and stress-free conditions, these cells possessed a substantial level of autophagosomes, which were localized in the cytoplasm separately from tubular mitochondria. In response to cytotoxic levels of PSM, the mitochondria became highly fragmented, and aggregated and colocalized with the autophagosomes. The cytotoxic effects of PSM were suppressed in response to various pharmacological autophagy inhibitors, including 3-methyladenine (3-MA) and bafilomycin A1, thus indicating the induction of autophagic cell death (ACD). Lethal levels of PSM also resulted in non-apoptotic, non-autophagic cell death in a reactive oxygen species-dependent manner under certain circumstances. Furthermore, TRAIL exhibited only a modest cytotoxicity toward these tumor cells, and did not induce ACD and mitochondrial aberration. The combined use of TRAIL and subtoxic concentrations of 3-MA resulted in decreased basal autophagy, increased mitochondrial aberration, colocalization with autophagosomes and apoptosis. These results indicated that PSM may induce ACD, whereas TRAIL may trigger cytoprotective autophagy that compromises apoptosis. To the best of our knowledge, the present study is the first to demonstrate that PSM can induce ACD in human cancer cells. These findings provide a rationale for the advantage of PSM over TRAIL in the destruction of apoptosis-resistant melanoma and osteosarcoma cells. |
format | Online Article Text |
id | pubmed-6017219 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-60172192018-06-27 Cold PSM, but not TRAIL, triggers autophagic cell death: A therapeutic advantage of PSM over TRAIL Ito, Tomohisa Ando, Takashi Suzuki-Karasaki, Miki Tokunaga, Tomohiko Yoshida, Yukihiro Ochiai, Toyoko Tokuhashi, Yasuaki Suzuki-Karasaki, Yoshihiro Int J Oncol Articles Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and cold plasma-stimulated medium (PSM) are promising novel anticancer tools due to their strong anticancer activities and high tumor-selectivity. The present study demonstrated that PSM and TRAIL may trigger autophagy in human malignant melanoma and osteosarcoma cells. Live-cell imaging revealed that even under nutritional and stress-free conditions, these cells possessed a substantial level of autophagosomes, which were localized in the cytoplasm separately from tubular mitochondria. In response to cytotoxic levels of PSM, the mitochondria became highly fragmented, and aggregated and colocalized with the autophagosomes. The cytotoxic effects of PSM were suppressed in response to various pharmacological autophagy inhibitors, including 3-methyladenine (3-MA) and bafilomycin A1, thus indicating the induction of autophagic cell death (ACD). Lethal levels of PSM also resulted in non-apoptotic, non-autophagic cell death in a reactive oxygen species-dependent manner under certain circumstances. Furthermore, TRAIL exhibited only a modest cytotoxicity toward these tumor cells, and did not induce ACD and mitochondrial aberration. The combined use of TRAIL and subtoxic concentrations of 3-MA resulted in decreased basal autophagy, increased mitochondrial aberration, colocalization with autophagosomes and apoptosis. These results indicated that PSM may induce ACD, whereas TRAIL may trigger cytoprotective autophagy that compromises apoptosis. To the best of our knowledge, the present study is the first to demonstrate that PSM can induce ACD in human cancer cells. These findings provide a rationale for the advantage of PSM over TRAIL in the destruction of apoptosis-resistant melanoma and osteosarcoma cells. D.A. Spandidos 2018-05-21 /pmc/articles/PMC6017219/ /pubmed/29845256 http://dx.doi.org/10.3892/ijo.2018.4413 Text en Copyright: © Ito et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Ito, Tomohisa Ando, Takashi Suzuki-Karasaki, Miki Tokunaga, Tomohiko Yoshida, Yukihiro Ochiai, Toyoko Tokuhashi, Yasuaki Suzuki-Karasaki, Yoshihiro Cold PSM, but not TRAIL, triggers autophagic cell death: A therapeutic advantage of PSM over TRAIL |
title | Cold PSM, but not TRAIL, triggers autophagic cell death: A therapeutic advantage of PSM over TRAIL |
title_full | Cold PSM, but not TRAIL, triggers autophagic cell death: A therapeutic advantage of PSM over TRAIL |
title_fullStr | Cold PSM, but not TRAIL, triggers autophagic cell death: A therapeutic advantage of PSM over TRAIL |
title_full_unstemmed | Cold PSM, but not TRAIL, triggers autophagic cell death: A therapeutic advantage of PSM over TRAIL |
title_short | Cold PSM, but not TRAIL, triggers autophagic cell death: A therapeutic advantage of PSM over TRAIL |
title_sort | cold psm, but not trail, triggers autophagic cell death: a therapeutic advantage of psm over trail |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017219/ https://www.ncbi.nlm.nih.gov/pubmed/29845256 http://dx.doi.org/10.3892/ijo.2018.4413 |
work_keys_str_mv | AT itotomohisa coldpsmbutnottrailtriggersautophagiccelldeathatherapeuticadvantageofpsmovertrail AT andotakashi coldpsmbutnottrailtriggersautophagiccelldeathatherapeuticadvantageofpsmovertrail AT suzukikarasakimiki coldpsmbutnottrailtriggersautophagiccelldeathatherapeuticadvantageofpsmovertrail AT tokunagatomohiko coldpsmbutnottrailtriggersautophagiccelldeathatherapeuticadvantageofpsmovertrail AT yoshidayukihiro coldpsmbutnottrailtriggersautophagiccelldeathatherapeuticadvantageofpsmovertrail AT ochiaitoyoko coldpsmbutnottrailtriggersautophagiccelldeathatherapeuticadvantageofpsmovertrail AT tokuhashiyasuaki coldpsmbutnottrailtriggersautophagiccelldeathatherapeuticadvantageofpsmovertrail AT suzukikarasakiyoshihiro coldpsmbutnottrailtriggersautophagiccelldeathatherapeuticadvantageofpsmovertrail |