Cargando…
Network-Based Differential Analysis to Identify Molecular Features of Tumorigenesis for Esophageal Squamous Carcinoma
Esophageal cancer has a poor prognosis and high mortality rate across the world. The diagnosis and treatment of esophageal cancer are hindered by the limited knowledge about the pathogenesis mechanisms of esophageal cancer. Esophageal cancer has two major subtypes, squamous and adenocarcinoma. In th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017464/ https://www.ncbi.nlm.nih.gov/pubmed/29301256 http://dx.doi.org/10.3390/molecules23010088 |
Sumario: | Esophageal cancer has a poor prognosis and high mortality rate across the world. The diagnosis and treatment of esophageal cancer are hindered by the limited knowledge about the pathogenesis mechanisms of esophageal cancer. Esophageal cancer has two major subtypes, squamous and adenocarcinoma. In this work, we proposed a method to select candidate biomarkers of esophageal squamous carcinoma based on the topological differential analysis between the gene–gene interaction networks for esophageal squamous carcinoma and normal cells. We established the gene–gene interaction networks for esophageal squamous carcinoma and normal based on the correlation of genes. For each gene, we firstly calculated and compared five centrality measures, which could reflect the topological property of a network. According to five centrality measures, the genes with large differences between the two networks were regarded as candidate biomarkers for esophageal squamous carcinoma. A total of 21 candidate biomarkers were identified for esophageal squamous carcinoma, and seven of them have been confirmed to be biomarkers of esophageal-12 squamous carcinoma by previous research. In addition, six genes (RBPMS2, PDK4, IGK, SBSN, IFIT3 and HSPB6) were likely to be the biomarkers of tumorigenesis for esophageal squamous carcinoma due to the fact that the biological processes in which they participate are closely related with the development of esophageal squamous carcinoma. Statistical analysis indicates that effectiveness of the detected biomarkers of esophageal squamous carcinoma. The proposed method could be extended to other complex diseases for detecting the molecular features of pathopoiesis and targets for targeted therapy. |
---|