Cargando…

Xylosylated Detoxification of the Rice Flavonoid Phytoalexin Sakuranetin by the Rice Sheath Blight Fungus Rhizoctonia solani

Sakuranetin (1) is a rice flavanone-type phytoalexin. We have already reported that the metabolites from the detoxification of 1 by Pyricularia oryzae are naringenin (2) and sternbin. In this study, we investigated whether the rice sheath blight fungus Rhizoctonia solani, another major rice pathogen...

Descripción completa

Detalles Bibliográficos
Autores principales: Katsumata, Shun, Toshima, Hiroaki, Hasegawa, Morifumi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017487/
https://www.ncbi.nlm.nih.gov/pubmed/29382171
http://dx.doi.org/10.3390/molecules23020276
Descripción
Sumario:Sakuranetin (1) is a rice flavanone-type phytoalexin. We have already reported that the metabolites from the detoxification of 1 by Pyricularia oryzae are naringenin (2) and sternbin. In this study, we investigated whether the rice sheath blight fungus Rhizoctonia solani, another major rice pathogen, can detoxify 1. The extract of R. solani suspension culture containing 1 was analyzed by LC-MS to identify the metabolites of 1. Three putative metabolites of 1 were detected in the extract from the R. solani suspension culture 12 h after the addition of 1, and they were identified as 2, sakuranetin-4′-O-β-d-xylopyranoside (3), and naringenin-7-O-β-d-xylopyranoside (4) by NMR, LC-MS/MS, and GC-MS analyses. The accumulation of 2, 3, and 4 reached their maximum levels 9–12 h after the addition of 1, whereas the content of 1 decreased to almost zero within 9 h. The antifungal activities of 3 and 4 against R. solani were negligible, and 2 showed weaker antifungal activity than 1. We concluded that 2, 3, and 4 are metabolites from the detoxification of 1 by R. solani. Xylosylation is a rare and efficient detoxification method for phytoalexins.