Cargando…

Cardiovascular Mechanisms of Action of Anthocyanins May Be Associated with the Impact of Microbial Metabolites on Heme Oxygenase-1 in Vascular Smooth Muscle Cells

Anthocyanins are reported to have cardio-protective effects, although their mechanisms of action remain elusive. We aimed to explore the effects of microbial metabolites common to anthocyanins and other flavonoids on vascular smooth muscle heme oxygenase-1 (HO-1) expression. Thirteen phenolic metabo...

Descripción completa

Detalles Bibliográficos
Autores principales: Warner, Emily F., Rodriguez-Ramiro, Ildefonso, O’Connell, Maria A., Kay, Colin D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017866/
https://www.ncbi.nlm.nih.gov/pubmed/29652826
http://dx.doi.org/10.3390/molecules23040898
Descripción
Sumario:Anthocyanins are reported to have cardio-protective effects, although their mechanisms of action remain elusive. We aimed to explore the effects of microbial metabolites common to anthocyanins and other flavonoids on vascular smooth muscle heme oxygenase-1 (HO-1) expression. Thirteen phenolic metabolites identified by previous anthocyanin human feeding studies, as well as 28 unique mixtures of metabolites and their known precursor structures were explored for their activity on HO-1 protein expression in rat aortic smooth muscle cells (RASMCs). No phenolic metabolites were active when treated in isolation; however, five mixtures of phenolic metabolites significantly increased HO-1 protein expression (127.4–116.6%, p ≤ 0.03). The present study demonstrates that phenolic metabolites of anthocyanins differentially affect HO-1 activity, often having additive, synergistic or nullifying effects.