Cargando…
Application of Multiple Regression and Design of Experiments for Modelling the Effect of Monoethylene Glycol in the Calcium Carbonate Scaling Process
To avoid gas hydrate formation during oil and gas production, companies usually employ thermodynamic inhibitors consisting of hydroxyl compounds, such as monoethylene glycol (MEG). However, these inhibitors may cause other types of fouling during production such as inorganic salt deposits (scale). C...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017891/ https://www.ncbi.nlm.nih.gov/pubmed/29642563 http://dx.doi.org/10.3390/molecules23040860 |
_version_ | 1783334849791131648 |
---|---|
author | Kartnaller, Vinicius Venâncio, Fabrício F. do Rosário, Francisca Cajaiba, João |
author_facet | Kartnaller, Vinicius Venâncio, Fabrício F. do Rosário, Francisca Cajaiba, João |
author_sort | Kartnaller, Vinicius |
collection | PubMed |
description | To avoid gas hydrate formation during oil and gas production, companies usually employ thermodynamic inhibitors consisting of hydroxyl compounds, such as monoethylene glycol (MEG). However, these inhibitors may cause other types of fouling during production such as inorganic salt deposits (scale). Calcium carbonate is one of the main scaling salts and is a great concern, especially for the new pre-salt wells being explored in Brazil. Hence, it is important to understand how using inhibitors to control gas hydrate formation may be interacting with the scale formation process. Multiple regression and design of experiments were used to mathematically model the calcium carbonate scaling process and its evolution in the presence of MEG. It was seen that MEG, although inducing the precipitation by increasing the supersaturation ratio, actually works as a scale inhibitor for calcium carbonate in concentrations over 40%. This effect was not due to changes in the viscosity, as suggested in the literature, but possibly to the binding of MEG to the CaCO(3) particles’ surface. The interaction of the MEG inhibition effect with the system’s variables was also assessed, when temperature’ and calcium concentration were more relevant. |
format | Online Article Text |
id | pubmed-6017891 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-60178912018-11-13 Application of Multiple Regression and Design of Experiments for Modelling the Effect of Monoethylene Glycol in the Calcium Carbonate Scaling Process Kartnaller, Vinicius Venâncio, Fabrício F. do Rosário, Francisca Cajaiba, João Molecules Article To avoid gas hydrate formation during oil and gas production, companies usually employ thermodynamic inhibitors consisting of hydroxyl compounds, such as monoethylene glycol (MEG). However, these inhibitors may cause other types of fouling during production such as inorganic salt deposits (scale). Calcium carbonate is one of the main scaling salts and is a great concern, especially for the new pre-salt wells being explored in Brazil. Hence, it is important to understand how using inhibitors to control gas hydrate formation may be interacting with the scale formation process. Multiple regression and design of experiments were used to mathematically model the calcium carbonate scaling process and its evolution in the presence of MEG. It was seen that MEG, although inducing the precipitation by increasing the supersaturation ratio, actually works as a scale inhibitor for calcium carbonate in concentrations over 40%. This effect was not due to changes in the viscosity, as suggested in the literature, but possibly to the binding of MEG to the CaCO(3) particles’ surface. The interaction of the MEG inhibition effect with the system’s variables was also assessed, when temperature’ and calcium concentration were more relevant. MDPI 2018-04-10 /pmc/articles/PMC6017891/ /pubmed/29642563 http://dx.doi.org/10.3390/molecules23040860 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kartnaller, Vinicius Venâncio, Fabrício F. do Rosário, Francisca Cajaiba, João Application of Multiple Regression and Design of Experiments for Modelling the Effect of Monoethylene Glycol in the Calcium Carbonate Scaling Process |
title | Application of Multiple Regression and Design of Experiments for Modelling the Effect of Monoethylene Glycol in the Calcium Carbonate Scaling Process |
title_full | Application of Multiple Regression and Design of Experiments for Modelling the Effect of Monoethylene Glycol in the Calcium Carbonate Scaling Process |
title_fullStr | Application of Multiple Regression and Design of Experiments for Modelling the Effect of Monoethylene Glycol in the Calcium Carbonate Scaling Process |
title_full_unstemmed | Application of Multiple Regression and Design of Experiments for Modelling the Effect of Monoethylene Glycol in the Calcium Carbonate Scaling Process |
title_short | Application of Multiple Regression and Design of Experiments for Modelling the Effect of Monoethylene Glycol in the Calcium Carbonate Scaling Process |
title_sort | application of multiple regression and design of experiments for modelling the effect of monoethylene glycol in the calcium carbonate scaling process |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017891/ https://www.ncbi.nlm.nih.gov/pubmed/29642563 http://dx.doi.org/10.3390/molecules23040860 |
work_keys_str_mv | AT kartnallervinicius applicationofmultipleregressionanddesignofexperimentsformodellingtheeffectofmonoethyleneglycolinthecalciumcarbonatescalingprocess AT venanciofabricio applicationofmultipleregressionanddesignofexperimentsformodellingtheeffectofmonoethyleneglycolinthecalciumcarbonatescalingprocess AT fdorosariofrancisca applicationofmultipleregressionanddesignofexperimentsformodellingtheeffectofmonoethyleneglycolinthecalciumcarbonatescalingprocess AT cajaibajoao applicationofmultipleregressionanddesignofexperimentsformodellingtheeffectofmonoethyleneglycolinthecalciumcarbonatescalingprocess |