Cargando…

Lignin from Hardwood and Softwood Biomass as a Lubricating Additive to Ethylene Glycol

Ethylene glycol (EG)-based lubricant was prepared with dissolved organosolv lignin from birch wood (BL) and softwood (SL) biomass. The effects of different lignin types on the rheological, thermal, and tribological properties of the lignin/EG lubricants were comprehensively investigated by various c...

Descripción completa

Detalles Bibliográficos
Autores principales: Mu, Liwen, Wu, Jian, Matsakas, Leonidas, Chen, Minjiao, Vahidi, Alireza, Grahn, Mattias, Rova, Ulrika, Christakopoulos, Paul, Zhu, Jiahua, Shi, Yijun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017903/
https://www.ncbi.nlm.nih.gov/pubmed/29495559
http://dx.doi.org/10.3390/molecules23030537
Descripción
Sumario:Ethylene glycol (EG)-based lubricant was prepared with dissolved organosolv lignin from birch wood (BL) and softwood (SL) biomass. The effects of different lignin types on the rheological, thermal, and tribological properties of the lignin/EG lubricants were comprehensively investigated by various characterization techniques. Dissolving organosolv lignin in EG results in outstanding lubricating properties. Specifically, the wear volume of the disc by EG-44BL is only 8.9% of that lubricated by pure EG. The enhanced anti-wear property of the EG/lignin system could be attributed to the formation of a robust lubrication film and the strong adhesion of the lubricant on the contacting metal surface due to the presence of a dense hydrogen bonding (H-bonding) network. The lubricating performance of EG-BL outperforms EG-SL, which could be attributed to the denser H-bonding sites in BL and its broader molecular weight distribution. The disc wear loss of EG-44BL is only 45.7% of that lubricated by EG-44SL. Overall, H-bonding is the major contributor to the different tribological properties of BL and SL in EG-based lubricants.