Cargando…
Segmenting Proteins into Tripeptides to Enhance Conformational Sampling with Monte Carlo Methods
This paper presents an approach to enhance conformational sampling of proteins employing stochastic algorithms such as Monte Carlo (MC) methods. The approach is based on a mechanistic representation of proteins and on the application of methods originating from robotics. We outline the general ideas...
Autores principales: | Denarie, Laurent, Al-Bluwi, Ibrahim, Vaisset, Marc, Siméon, Thierry, Cortés, Juan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017905/ https://www.ncbi.nlm.nih.gov/pubmed/29425162 http://dx.doi.org/10.3390/molecules23020373 |
Ejemplares similares
-
Modeling protein conformational transitions by a combination of coarse-grained normal mode analysis and robotics-inspired methods
por: Al-Bluwi, Ibrahim, et al.
Publicado: (2013) -
MoMA-LigPath: a web server to simulate protein–ligand unbinding
por: Devaurs, Didier, et al.
Publicado: (2013) -
Monte Carlo and Quasi-Monte Carlo Sampling
por: Lemieux, Christiane
Publicado: (2009) -
Sampling of the conformational landscape of small proteins with Monte Carlo methods
por: Heilmann, Nana, et al.
Publicado: (2020) -
Enhancing Ligand and Protein
Sampling Using Sequential Monte Carlo
por: Suruzhon, Miroslav, et al.
Publicado: (2022)