Cargando…

The Detailed Bactericidal Process of Ferric Oxide Nanoparticles on E. coli

While nanoparticles exert bactericidal effects through the generation of reactive oxygen species (ROS), the processes of the internalization of and the direct physical damage caused by iron oxide nanoparticles are not completely clear. We hypothesize that direct physical or mechanical damage of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yunqiao, Yang, Dong, Wang, Shang, Li, Chenyu, Xue, Bin, Yang, Lin, Shen, Zhiqiang, Jin, Min, Wang, Jingfeng, Qiu, Zhigang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017908/
https://www.ncbi.nlm.nih.gov/pubmed/29518002
http://dx.doi.org/10.3390/molecules23030606
Descripción
Sumario:While nanoparticles exert bactericidal effects through the generation of reactive oxygen species (ROS), the processes of the internalization of and the direct physical damage caused by iron oxide nanoparticles are not completely clear. We hypothesize that direct physical or mechanical damage of the cell membrane and cytoplasmic integrity by nanoparticles is another major cause of bacterial death besides ROS. The aim of this study is to investigate the process of the internalization of iron oxide nanoparticles, and to evaluate the effect of direct physical or mechanical damage on bacterial cell growth and death. The results demonstrate that iron oxide nanoparticles not only inhibited E. coli cell growth, but also caused bacterial cell death. Iron oxide nanoparticles produced significantly elevated ROS levels in bacteria. Transmission electronic microscopy demonstrated that iron oxide nanoparticles were internalized into and condensed the cytoplasm. Strikingly, we observed that the internalized nanoparticles caused intracellular vacuole formation, instead of simply adsorbing thereon; and formed clusters on the bacterial surface and tore up the outer cell membrane to release cytoplasm. This is the first time that the exact process of the internalization of iron oxide nanoparticles has been observed. We speculate that the intracellular vacuole formation and direct physical or mechanical damage caused by the iron oxide nanoparticles caused the bactericidal effect, along with the effects of ROS.