Cargando…
Development of an Artificial Neural Network as a Tool for Predicting the Targeted Phenolic Profile of Grapevine (Vitis vinifera) Foliar Wastes
High performance liquid chromatography data related to the concentrations of 12 phenolic compounds in vegetative parts, measured at four sampling times were processed for developing prediction models, based on the cultivar, grapevine organ, growth stage, total flavonoid content (TFC), total reducing...
Autores principales: | Eftekhari, Maliheh, Yadollahi, Abbas, Ahmadi, Hamed, Shojaeiyan, Abdolali, Ayyari, Mahdi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6018394/ https://www.ncbi.nlm.nih.gov/pubmed/29971086 http://dx.doi.org/10.3389/fpls.2018.00837 |
Ejemplares similares
-
Artificial Neural Network Genetic Algorithm As Powerful Tool to Predict and Optimize In vitro Proliferation Mineral Medium for G × N15 Rootstock
por: Arab, Mohammad M., et al.
Publicado: (2016) -
VitisCyc: a metabolic pathway knowledgebase for grapevine (Vitis vinifera)
por: Naithani, Sushma, et al.
Publicado: (2014) -
Genomics of Flower Identity in Grapevine (Vitis vinifera L.)
por: Palumbo, Fabio, et al.
Publicado: (2019) -
The Molecular Regulation of Carbon Sink Strength in Grapevine (Vitis vinifera L.)
por: Li, You-Mei, et al.
Publicado: (2021) -
Mathematical Modeling and Optimizing of in Vitro Hormonal Combination for G × N15 Vegetative Rootstock Proliferation Using Artificial Neural Network-Genetic Algorithm (ANN-GA)
por: Arab, Mohammad M., et al.
Publicado: (2017)