Cargando…
Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters
To combine the advantages of ultrafast femtosecond nano-optics with an on-chip communication scheme, optical signals with a frequency of several hundreds of THz need to be down-converted to coherent electronic signals propagating on-chip. So far, this has not been achieved because of the overall slo...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6018641/ https://www.ncbi.nlm.nih.gov/pubmed/29941975 http://dx.doi.org/10.1038/s41467-018-04666-y |
Sumario: | To combine the advantages of ultrafast femtosecond nano-optics with an on-chip communication scheme, optical signals with a frequency of several hundreds of THz need to be down-converted to coherent electronic signals propagating on-chip. So far, this has not been achieved because of the overall slow response time of nanoscale electronic circuits. Here, we demonstrate that 14 fs optical pulses in the near-infrared can drive electronic on-chip circuits with a prospective bandwidth up to 10 THz. The corresponding electronic pulses propagate in macroscopic striplines on a millimeter scale. We exploit femtosecond photoswitches based on asymmetric, nanoscale metal junctions to drive the pulses. The non-linear ultrafast response is based on a plasmonically enhanced, multiphoton absorption resulting in a field emission of ballistic hot electrons propagating across the nanoscale junctions. Our results pave the way towards femtosecond electronics integrated in wafer-scale THz circuits. |
---|