Cargando…

Revealing the immune perturbation of black phosphorus nanomaterials to macrophages by understanding the protein corona

The increasing number of biological applications for black phosphorus (BP) nanomaterials has precipitated considerable concern about their interactions with physiological systems. Here we demonstrate the adsorption of plasma protein onto BP nanomaterials and the subsequent immune perturbation effect...

Descripción completa

Detalles Bibliográficos
Autores principales: Mo, Jianbin, Xie, Qingyun, Wei, Wei, Zhao, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6018659/
https://www.ncbi.nlm.nih.gov/pubmed/29946125
http://dx.doi.org/10.1038/s41467-018-04873-7
Descripción
Sumario:The increasing number of biological applications for black phosphorus (BP) nanomaterials has precipitated considerable concern about their interactions with physiological systems. Here we demonstrate the adsorption of plasma protein onto BP nanomaterials and the subsequent immune perturbation effect on macrophages. Using liquid chromatography tandem mass spectrometry, 75.8% of the proteins bound to BP quantum dots were immune relevant proteins, while that percentage for BP nanosheet–corona complexes is 69.9%. In particular, the protein corona dramatically reshapes BP nanomaterial–corona complexes, influenced cellular uptake, activated the NF-κB pathway and even increased cytokine secretion by 2–4-fold. BP nanomaterials induce immunotoxicity and immune perturbation in macrophages in the presence of a plasma corona. These findings offer important insights into the development of safe and effective BP nanomaterial-based therapies.