Cargando…

Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice

The exocyst, an evolutionarily conserved octameric protein complex involved in exocytosis, has been reported to be involved in diverse aspects of morphogenesis in Arabidopsis. However, the molecular functions of such exocytotic molecules in rice are poorly understood. Here, we examined the molecular...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Jin, Chen, Jun, Wang, Min, Ren, Yulong, Wang, Shuai, Lei, Cailin, Cheng, Zhijun, Sodmergen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6018903/
https://www.ncbi.nlm.nih.gov/pubmed/29300985
http://dx.doi.org/10.1093/jxb/erx458
Descripción
Sumario:The exocyst, an evolutionarily conserved octameric protein complex involved in exocytosis, has been reported to be involved in diverse aspects of morphogenesis in Arabidopsis. However, the molecular functions of such exocytotic molecules in rice are poorly understood. Here, we examined the molecular function of OsSEC3A, an important subunit of the exocyst complex in rice. The OsSEC3A gene is expressed in various organs, and OsSEC3A has the potential ability to participate in the exocyst complex by interacting with several other exocyst subunits. Disruption of OsSEC3A by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) caused dwarf stature and a lesion-mimic phenotype. The Ossec3a mutant exhibited enhanced defense responses, as shown by up-regulated transcript levels of pathogenesis- and salicylic acid synthesis-related genes, increased levels of salicylic acid, and enhanced resistance to the fungal pathogen Magnaporthe oryzae. Subcellular localization analysis demonstrated that OsSEC3A has a punctate distribution with the plasma membrane. In addition, OsSEC3A interacted with rice SNAP25-type t-SNARE protein OsSNAP32, which is involved in rice blast resistance, via the C-terminus and bound to phosphatidylinositol lipids, particularly phosphatidylinositol-3-phosphate, through its N-terminus. These findings uncover the novel function of rice exocyst subunit SEC3 in defense responses.