Cargando…
Nanoscale momentum-resolved vibrational spectroscopy
Vibrational modes affect fundamental physical properties such as the conduction of sound and heat and can be sensitive to nano- and atomic-scale structure. Probing the momentum transfer dependence of vibrational modes provides a wealth of information about a materials system; however, experimental w...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6018998/ https://www.ncbi.nlm.nih.gov/pubmed/29951584 http://dx.doi.org/10.1126/sciadv.aar7495 |
_version_ | 1783335058368626688 |
---|---|
author | Hage, Fredrik S. Nicholls, Rebecca J. Yates, Jonathan R. McCulloch, Dougal G. Lovejoy, Tracy C. Dellby, Niklas Krivanek, Ondrej L. Refson, Keith Ramasse, Quentin M. |
author_facet | Hage, Fredrik S. Nicholls, Rebecca J. Yates, Jonathan R. McCulloch, Dougal G. Lovejoy, Tracy C. Dellby, Niklas Krivanek, Ondrej L. Refson, Keith Ramasse, Quentin M. |
author_sort | Hage, Fredrik S. |
collection | PubMed |
description | Vibrational modes affect fundamental physical properties such as the conduction of sound and heat and can be sensitive to nano- and atomic-scale structure. Probing the momentum transfer dependence of vibrational modes provides a wealth of information about a materials system; however, experimental work has been limited to essentially bulk and averaged surface approaches or to small wave vectors. We demonstrate a combined experimental and theoretical methodology for nanoscale mapping of optical and acoustic phonons across the first Brillouin zone, in the electron microscope, probing a volume ~10(10) to 10(20) times smaller than that of comparable bulk and surface techniques. In combination with more conventional electron microscopy techniques, the presented methodology should allow for direct correlation of nanoscale vibrational mode dispersions with atomic-scale structure and chemistry. |
format | Online Article Text |
id | pubmed-6018998 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-60189982018-06-27 Nanoscale momentum-resolved vibrational spectroscopy Hage, Fredrik S. Nicholls, Rebecca J. Yates, Jonathan R. McCulloch, Dougal G. Lovejoy, Tracy C. Dellby, Niklas Krivanek, Ondrej L. Refson, Keith Ramasse, Quentin M. Sci Adv Research Articles Vibrational modes affect fundamental physical properties such as the conduction of sound and heat and can be sensitive to nano- and atomic-scale structure. Probing the momentum transfer dependence of vibrational modes provides a wealth of information about a materials system; however, experimental work has been limited to essentially bulk and averaged surface approaches or to small wave vectors. We demonstrate a combined experimental and theoretical methodology for nanoscale mapping of optical and acoustic phonons across the first Brillouin zone, in the electron microscope, probing a volume ~10(10) to 10(20) times smaller than that of comparable bulk and surface techniques. In combination with more conventional electron microscopy techniques, the presented methodology should allow for direct correlation of nanoscale vibrational mode dispersions with atomic-scale structure and chemistry. American Association for the Advancement of Science 2018-06-15 /pmc/articles/PMC6018998/ /pubmed/29951584 http://dx.doi.org/10.1126/sciadv.aar7495 Text en Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Hage, Fredrik S. Nicholls, Rebecca J. Yates, Jonathan R. McCulloch, Dougal G. Lovejoy, Tracy C. Dellby, Niklas Krivanek, Ondrej L. Refson, Keith Ramasse, Quentin M. Nanoscale momentum-resolved vibrational spectroscopy |
title | Nanoscale momentum-resolved vibrational spectroscopy |
title_full | Nanoscale momentum-resolved vibrational spectroscopy |
title_fullStr | Nanoscale momentum-resolved vibrational spectroscopy |
title_full_unstemmed | Nanoscale momentum-resolved vibrational spectroscopy |
title_short | Nanoscale momentum-resolved vibrational spectroscopy |
title_sort | nanoscale momentum-resolved vibrational spectroscopy |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6018998/ https://www.ncbi.nlm.nih.gov/pubmed/29951584 http://dx.doi.org/10.1126/sciadv.aar7495 |
work_keys_str_mv | AT hagefredriks nanoscalemomentumresolvedvibrationalspectroscopy AT nichollsrebeccaj nanoscalemomentumresolvedvibrationalspectroscopy AT yatesjonathanr nanoscalemomentumresolvedvibrationalspectroscopy AT mccullochdougalg nanoscalemomentumresolvedvibrationalspectroscopy AT lovejoytracyc nanoscalemomentumresolvedvibrationalspectroscopy AT dellbyniklas nanoscalemomentumresolvedvibrationalspectroscopy AT krivanekondrejl nanoscalemomentumresolvedvibrationalspectroscopy AT refsonkeith nanoscalemomentumresolvedvibrationalspectroscopy AT ramassequentinm nanoscalemomentumresolvedvibrationalspectroscopy |