Cargando…

Nanoscale momentum-resolved vibrational spectroscopy

Vibrational modes affect fundamental physical properties such as the conduction of sound and heat and can be sensitive to nano- and atomic-scale structure. Probing the momentum transfer dependence of vibrational modes provides a wealth of information about a materials system; however, experimental w...

Descripción completa

Detalles Bibliográficos
Autores principales: Hage, Fredrik S., Nicholls, Rebecca J., Yates, Jonathan R., McCulloch, Dougal G., Lovejoy, Tracy C., Dellby, Niklas, Krivanek, Ondrej L., Refson, Keith, Ramasse, Quentin M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6018998/
https://www.ncbi.nlm.nih.gov/pubmed/29951584
http://dx.doi.org/10.1126/sciadv.aar7495
_version_ 1783335058368626688
author Hage, Fredrik S.
Nicholls, Rebecca J.
Yates, Jonathan R.
McCulloch, Dougal G.
Lovejoy, Tracy C.
Dellby, Niklas
Krivanek, Ondrej L.
Refson, Keith
Ramasse, Quentin M.
author_facet Hage, Fredrik S.
Nicholls, Rebecca J.
Yates, Jonathan R.
McCulloch, Dougal G.
Lovejoy, Tracy C.
Dellby, Niklas
Krivanek, Ondrej L.
Refson, Keith
Ramasse, Quentin M.
author_sort Hage, Fredrik S.
collection PubMed
description Vibrational modes affect fundamental physical properties such as the conduction of sound and heat and can be sensitive to nano- and atomic-scale structure. Probing the momentum transfer dependence of vibrational modes provides a wealth of information about a materials system; however, experimental work has been limited to essentially bulk and averaged surface approaches or to small wave vectors. We demonstrate a combined experimental and theoretical methodology for nanoscale mapping of optical and acoustic phonons across the first Brillouin zone, in the electron microscope, probing a volume ~10(10) to 10(20) times smaller than that of comparable bulk and surface techniques. In combination with more conventional electron microscopy techniques, the presented methodology should allow for direct correlation of nanoscale vibrational mode dispersions with atomic-scale structure and chemistry.
format Online
Article
Text
id pubmed-6018998
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-60189982018-06-27 Nanoscale momentum-resolved vibrational spectroscopy Hage, Fredrik S. Nicholls, Rebecca J. Yates, Jonathan R. McCulloch, Dougal G. Lovejoy, Tracy C. Dellby, Niklas Krivanek, Ondrej L. Refson, Keith Ramasse, Quentin M. Sci Adv Research Articles Vibrational modes affect fundamental physical properties such as the conduction of sound and heat and can be sensitive to nano- and atomic-scale structure. Probing the momentum transfer dependence of vibrational modes provides a wealth of information about a materials system; however, experimental work has been limited to essentially bulk and averaged surface approaches or to small wave vectors. We demonstrate a combined experimental and theoretical methodology for nanoscale mapping of optical and acoustic phonons across the first Brillouin zone, in the electron microscope, probing a volume ~10(10) to 10(20) times smaller than that of comparable bulk and surface techniques. In combination with more conventional electron microscopy techniques, the presented methodology should allow for direct correlation of nanoscale vibrational mode dispersions with atomic-scale structure and chemistry. American Association for the Advancement of Science 2018-06-15 /pmc/articles/PMC6018998/ /pubmed/29951584 http://dx.doi.org/10.1126/sciadv.aar7495 Text en Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Hage, Fredrik S.
Nicholls, Rebecca J.
Yates, Jonathan R.
McCulloch, Dougal G.
Lovejoy, Tracy C.
Dellby, Niklas
Krivanek, Ondrej L.
Refson, Keith
Ramasse, Quentin M.
Nanoscale momentum-resolved vibrational spectroscopy
title Nanoscale momentum-resolved vibrational spectroscopy
title_full Nanoscale momentum-resolved vibrational spectroscopy
title_fullStr Nanoscale momentum-resolved vibrational spectroscopy
title_full_unstemmed Nanoscale momentum-resolved vibrational spectroscopy
title_short Nanoscale momentum-resolved vibrational spectroscopy
title_sort nanoscale momentum-resolved vibrational spectroscopy
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6018998/
https://www.ncbi.nlm.nih.gov/pubmed/29951584
http://dx.doi.org/10.1126/sciadv.aar7495
work_keys_str_mv AT hagefredriks nanoscalemomentumresolvedvibrationalspectroscopy
AT nichollsrebeccaj nanoscalemomentumresolvedvibrationalspectroscopy
AT yatesjonathanr nanoscalemomentumresolvedvibrationalspectroscopy
AT mccullochdougalg nanoscalemomentumresolvedvibrationalspectroscopy
AT lovejoytracyc nanoscalemomentumresolvedvibrationalspectroscopy
AT dellbyniklas nanoscalemomentumresolvedvibrationalspectroscopy
AT krivanekondrejl nanoscalemomentumresolvedvibrationalspectroscopy
AT refsonkeith nanoscalemomentumresolvedvibrationalspectroscopy
AT ramassequentinm nanoscalemomentumresolvedvibrationalspectroscopy