Cargando…
Big data from electronic health records for early and late translational cardiovascular research: challenges and potential
AIMS: Cohorts of millions of people's health records, whole genome sequencing, imaging, sensor, societal and publicly available data present a rapidly expanding digital trace of health. We aimed to critically review, for the first time, the challenges and potential of big data across early and...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019015/ https://www.ncbi.nlm.nih.gov/pubmed/29370377 http://dx.doi.org/10.1093/eurheartj/ehx487 |
_version_ | 1783335060700659712 |
---|---|
author | Hemingway, Harry Asselbergs, Folkert W Danesh, John Dobson, Richard Maniadakis, Nikolaos Maggioni, Aldo van Thiel, Ghislaine J M Cronin, Maureen Brobert, Gunnar Vardas, Panos Anker, Stefan D Grobbee, Diederick E Denaxas, Spiros |
author_facet | Hemingway, Harry Asselbergs, Folkert W Danesh, John Dobson, Richard Maniadakis, Nikolaos Maggioni, Aldo van Thiel, Ghislaine J M Cronin, Maureen Brobert, Gunnar Vardas, Panos Anker, Stefan D Grobbee, Diederick E Denaxas, Spiros |
author_sort | Hemingway, Harry |
collection | PubMed |
description | AIMS: Cohorts of millions of people's health records, whole genome sequencing, imaging, sensor, societal and publicly available data present a rapidly expanding digital trace of health. We aimed to critically review, for the first time, the challenges and potential of big data across early and late stages of translational cardiovascular disease research. METHODS AND RESULTS: We sought exemplars based on literature reviews and expertise across the BigData@Heart Consortium. We identified formidable challenges including: data quality, knowing what data exist, the legal and ethical framework for their use, data sharing, building and maintaining public trust, developing standards for defining disease, developing tools for scalable, replicable science and equipping the clinical and scientific work force with new inter-disciplinary skills. Opportunities claimed for big health record data include: richer profiles of health and disease from birth to death and from the molecular to the societal scale; accelerated understanding of disease causation and progression, discovery of new mechanisms and treatment-relevant disease sub-phenotypes, understanding health and diseases in whole populations and whole health systems and returning actionable feedback loops to improve (and potentially disrupt) existing models of research and care, with greater efficiency. In early translational research we identified exemplars including: discovery of fundamental biological processes e.g. linking exome sequences to lifelong electronic health records (EHR) (e.g. human knockout experiments); drug development: genomic approaches to drug target validation; precision medicine: e.g. DNA integrated into hospital EHR for pre-emptive pharmacogenomics. In late translational research we identified exemplars including: learning health systems with outcome trials integrated into clinical care; citizen driven health with 24/7 multi-parameter patient monitoring to improve outcomes and population-based linkages of multiple EHR sources for higher resolution clinical epidemiology and public health. CONCLUSION: High volumes of inherently diverse (‘big’) EHR data are beginning to disrupt the nature of cardiovascular research and care. Such big data have the potential to improve our understanding of disease causation and classification relevant for early translation and to contribute actionable analytics to improve health and healthcare. |
format | Online Article Text |
id | pubmed-6019015 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-60190152018-07-09 Big data from electronic health records for early and late translational cardiovascular research: challenges and potential Hemingway, Harry Asselbergs, Folkert W Danesh, John Dobson, Richard Maniadakis, Nikolaos Maggioni, Aldo van Thiel, Ghislaine J M Cronin, Maureen Brobert, Gunnar Vardas, Panos Anker, Stefan D Grobbee, Diederick E Denaxas, Spiros Eur Heart J Clinical Review AIMS: Cohorts of millions of people's health records, whole genome sequencing, imaging, sensor, societal and publicly available data present a rapidly expanding digital trace of health. We aimed to critically review, for the first time, the challenges and potential of big data across early and late stages of translational cardiovascular disease research. METHODS AND RESULTS: We sought exemplars based on literature reviews and expertise across the BigData@Heart Consortium. We identified formidable challenges including: data quality, knowing what data exist, the legal and ethical framework for their use, data sharing, building and maintaining public trust, developing standards for defining disease, developing tools for scalable, replicable science and equipping the clinical and scientific work force with new inter-disciplinary skills. Opportunities claimed for big health record data include: richer profiles of health and disease from birth to death and from the molecular to the societal scale; accelerated understanding of disease causation and progression, discovery of new mechanisms and treatment-relevant disease sub-phenotypes, understanding health and diseases in whole populations and whole health systems and returning actionable feedback loops to improve (and potentially disrupt) existing models of research and care, with greater efficiency. In early translational research we identified exemplars including: discovery of fundamental biological processes e.g. linking exome sequences to lifelong electronic health records (EHR) (e.g. human knockout experiments); drug development: genomic approaches to drug target validation; precision medicine: e.g. DNA integrated into hospital EHR for pre-emptive pharmacogenomics. In late translational research we identified exemplars including: learning health systems with outcome trials integrated into clinical care; citizen driven health with 24/7 multi-parameter patient monitoring to improve outcomes and population-based linkages of multiple EHR sources for higher resolution clinical epidemiology and public health. CONCLUSION: High volumes of inherently diverse (‘big’) EHR data are beginning to disrupt the nature of cardiovascular research and care. Such big data have the potential to improve our understanding of disease causation and classification relevant for early translation and to contribute actionable analytics to improve health and healthcare. Oxford University Press 2018-04-21 2017-08-29 /pmc/articles/PMC6019015/ /pubmed/29370377 http://dx.doi.org/10.1093/eurheartj/ehx487 Text en © The Author 2017. Published by Oxford University Press on behalf of the European Society of Cardiology http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Clinical Review Hemingway, Harry Asselbergs, Folkert W Danesh, John Dobson, Richard Maniadakis, Nikolaos Maggioni, Aldo van Thiel, Ghislaine J M Cronin, Maureen Brobert, Gunnar Vardas, Panos Anker, Stefan D Grobbee, Diederick E Denaxas, Spiros Big data from electronic health records for early and late translational cardiovascular research: challenges and potential |
title | Big data from electronic health records for early and late translational cardiovascular research: challenges and potential |
title_full | Big data from electronic health records for early and late translational cardiovascular research: challenges and potential |
title_fullStr | Big data from electronic health records for early and late translational cardiovascular research: challenges and potential |
title_full_unstemmed | Big data from electronic health records for early and late translational cardiovascular research: challenges and potential |
title_short | Big data from electronic health records for early and late translational cardiovascular research: challenges and potential |
title_sort | big data from electronic health records for early and late translational cardiovascular research: challenges and potential |
topic | Clinical Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019015/ https://www.ncbi.nlm.nih.gov/pubmed/29370377 http://dx.doi.org/10.1093/eurheartj/ehx487 |
work_keys_str_mv | AT hemingwayharry bigdatafromelectronichealthrecordsforearlyandlatetranslationalcardiovascularresearchchallengesandpotential AT asselbergsfolkertw bigdatafromelectronichealthrecordsforearlyandlatetranslationalcardiovascularresearchchallengesandpotential AT daneshjohn bigdatafromelectronichealthrecordsforearlyandlatetranslationalcardiovascularresearchchallengesandpotential AT dobsonrichard bigdatafromelectronichealthrecordsforearlyandlatetranslationalcardiovascularresearchchallengesandpotential AT maniadakisnikolaos bigdatafromelectronichealthrecordsforearlyandlatetranslationalcardiovascularresearchchallengesandpotential AT maggionialdo bigdatafromelectronichealthrecordsforearlyandlatetranslationalcardiovascularresearchchallengesandpotential AT vanthielghislainejm bigdatafromelectronichealthrecordsforearlyandlatetranslationalcardiovascularresearchchallengesandpotential AT croninmaureen bigdatafromelectronichealthrecordsforearlyandlatetranslationalcardiovascularresearchchallengesandpotential AT brobertgunnar bigdatafromelectronichealthrecordsforearlyandlatetranslationalcardiovascularresearchchallengesandpotential AT vardaspanos bigdatafromelectronichealthrecordsforearlyandlatetranslationalcardiovascularresearchchallengesandpotential AT ankerstefand bigdatafromelectronichealthrecordsforearlyandlatetranslationalcardiovascularresearchchallengesandpotential AT grobbeediedericke bigdatafromelectronichealthrecordsforearlyandlatetranslationalcardiovascularresearchchallengesandpotential AT denaxasspiros bigdatafromelectronichealthrecordsforearlyandlatetranslationalcardiovascularresearchchallengesandpotential AT bigdatafromelectronichealthrecordsforearlyandlatetranslationalcardiovascularresearchchallengesandpotential |