Cargando…

Individual differences in hyper-realistic mask detection

Hyper-realistic masks present a new challenge to security and crime prevention. We have recently shown that people’s ability to differentiate these masks from real faces is extremely limited. Here we consider individual differences as a means to improve mask detection. Participants categorized singl...

Descripción completa

Detalles Bibliográficos
Autores principales: Sanders, Jet G., Jenkins, Rob
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019421/
https://www.ncbi.nlm.nih.gov/pubmed/30009254
http://dx.doi.org/10.1186/s41235-018-0118-3
Descripción
Sumario:Hyper-realistic masks present a new challenge to security and crime prevention. We have recently shown that people’s ability to differentiate these masks from real faces is extremely limited. Here we consider individual differences as a means to improve mask detection. Participants categorized single images as masks or real faces in a computer-based task. Experiment 1 revealed poor accuracy (40%) and large individual differences (5–100%) for high-realism masks among low-realism masks and real faces. Individual differences in mask categorization accuracy remained large when the Low-realism condition was eliminated (Experiment 2). Accuracy for mask images was not correlated with accuracy for real face images or with prior knowledge of hyper-realistic face masks. Image analysis revealed that mask and face stimuli were most strongly differentiated in the region below the eyes. Moreover, high-performing participants tracked the differential information in this area, but low-performing participants did not. Like other face tasks (e.g. identification), hyper-realistic mask detection gives rise to large individual differences in performance. Unlike many other face tasks, performance may be localized to a specific image cue.