Cargando…
Semi-supervised machine learning for automated species identification by collagen peptide mass fingerprinting
BACKGROUND: Biomolecular methods for species identification are increasingly being utilised in the study of changing environments, both at the microscopic and macroscopic levels. High-throughput peptide mass fingerprinting has been largely applied to bacterial identification, but increasingly used t...
Autores principales: | Gu, Muxin, Buckley, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019507/ https://www.ncbi.nlm.nih.gov/pubmed/29940843 http://dx.doi.org/10.1186/s12859-018-2221-3 |
Ejemplares similares
-
Robust identification of molecular phenotypes using semi-supervised learning
por: Roder, Heinrich, et al.
Publicado: (2019) -
Species Identification of Bovine, Ovine and Porcine Type 1 Collagen; Comparing Peptide Mass Fingerprinting and LC-Based Proteomics Methods
por: Buckley, Mike
Publicado: (2016) -
Research Screener: a machine learning tool to semi-automate abstract screening for systematic reviews
por: Chai, Kevin E. K., et al.
Publicado: (2021) -
Evaluation of a prototype machine learning tool to semi-automate data extraction for systematic literature reviews
por: Panayi, Antonia, et al.
Publicado: (2023) -
IILLS: predicting virus-receptor interactions based on similarity and semi-supervised learning
por: Yan, Cheng, et al.
Publicado: (2019)